
www.manaraa.com

University of Iowa University of Iowa

Iowa Research Online Iowa Research Online

Theses and Dissertations

Fall 2018

Cognitive-model-driven pilot attention for commercial airline Cognitive-model-driven pilot attention for commercial airline

scenarios scenarios

Mathew Brian Cover
University of Iowa

Follow this and additional works at: https://ir.uiowa.edu/etd

 Part of the Electrical and Computer Engineering Commons

Copyright © 2018 Mathew Brian Cover

This dissertation is available at Iowa Research Online: https://ir.uiowa.edu/etd/6557

Recommended Citation Recommended Citation
Cover, Mathew Brian. "Cognitive-model-driven pilot attention for commercial airline scenarios." PhD
(Doctor of Philosophy) thesis, University of Iowa, 2018.
https://doi.org/10.17077/etd.a13a-g8sw

Follow this and additional works at: https://ir.uiowa.edu/etd

 Part of the Electrical and Computer Engineering Commons

https://ir.uiowa.edu/
https://ir.uiowa.edu/etd
https://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F6557&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=ir.uiowa.edu%2Fetd%2F6557&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.17077/etd.a13a-g8sw
https://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F6557&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=ir.uiowa.edu%2Fetd%2F6557&utm_medium=PDF&utm_campaign=PDFCoverPages

www.manaraa.com

COGNITIVE-MODEL-DRIVEN PILOT ATTENTION FOR COMMERCIAL AIRLINE

SCENARIOS

by

Mathew Brian Cover

A thesis submitted in partial fulfillment

of the requirements for the Doctor of Philosophy

degree in Electrical and Computer Engineering in the

Graduate College of

The University of Iowa

December 2018

Thesis Supervisor: Professor Thomas Schnell

www.manaraa.com

Copyright by

MATHEW BRIAN COVER

2018

All Rights Reserved

www.manaraa.com

ii

To Grandpa Purdy, the man who gave me the inspiration to become an engineer ever

since I was a child. He fed me a steady diet of computer books, toys, electronic kits and

more, and I knew I wanted to be just like him when I grew up.

www.manaraa.com

iii

Ad astra per aspera

“To the stars through difficulties”

Latin Proverb

www.manaraa.com

iv

ACKNOWLEDGMENTS

I would like to thank Professor Tom Schnell for his guidance during my research.

His experience and support was invaluable to completing my dissertation. I’d also like to

extend my gratitude to Professor David Andersen. As my advisor for my master’s thesis

and academic advisor for my PhD, he has provided me guidance and helped pushed me

toward the finish line over the last few years.

Next, I need to give acknowledgements to the graduate students and full-time

employees at the Operator Performance Lab: Mike Yocius for blazing the graduate student

trail ahead of me and giving me hope it can be done. Zeke Gunnink for allowing me to

pick his brain whenever I ran into problems with writing code or debugging a nasty side-

effect I may have discovered and/or introduced. Chris Reuter for being there as moral

support from a fellow graduate student that understood the same stresses I was going

through to get this finished.

Finally, I’d like to thank all of my friends and family who constantly gave me

support during the periods when I was really struggling with writing or finding ways to

stay motivated when I felt lost. You all listened to my thoughts and concerns, and that

meant the world to me. Without your words of encouragement, support, and suggestions

over the last few years, I would have surely failed during this time.

www.manaraa.com

v

ABSTRACT

Bringing airline pilots to remote locations for evaluation of new

software/hardware tools and procedures is an expensive process in terms of both money

and time. Estimating the design and outcome of a study to evaluate these new tools can

be tricky as there are many new variables for which there is little to no data. However,

sometimes even after careful vetting of scenarios in the simulator prior to bringing

subject-matter experts into the simulation facility, few to no metrics of statistical

significance can be found. While it may be valid that there are no metrics of statistical

significance, it is perhaps a missed opportunity to take advantage of the precious time and

resources of having a subject-matter expert at the research facility.

The research presented in this paper has developed a software tool for simulating

a pilot’s visual perception of working in various configurations of cockpits. This may

provide researchers insight into what types of scenarios and tactics would be of interest to

use with real subject-matter experts. In other words, this should help identify the best use

of resources to take advantage of having pilots at the facility and avoid

scenarios/procedures that don’t generate data of interest.

Another useful possibility with this tool is identifying cockpits that may be

inefficiently designed. Instruments that should be grouped together can be easily

identified by analyzing the eye-scan pattern of the model with different cockpit-

configuration files. The results that this new software-evaluation tool provides have

implications for several different evaluations beyond estimating pilot reactions.

www.manaraa.com

vi

PUBLIC ABSTRACT

Bringing airline pilots to remote locations for evaluation of new

software/hardware tools and procedures is an expensive process in terms of both money

and time. Designing scenarios to evaluate these new tools can be tricky as there are many

new variables for which there is little to no data. However, sometimes even after careful

vetting of scenarios in the simulator prior to bringing airline pilots into the simulation

facility, few to no points of data that illustrate something interesting can be found. If

nothing else, it is perhaps a missed opportunity to take advantage of the precious time and

resources of having a pilot at the research facility.

The research presented in this paper has developed a software tool for simulating

a pilot’s visual perception in various types of aircraft. This should help researchers

identify the best use of their time to take advantage of having pilots at the facility and

avoid scenarios/procedures that could be a waste of time. Another useful possibility with

this tool is identifying cockpits that may be inefficiently designed. The results that this

new software-evaluation tool provides have implications for several different evaluations.

www.manaraa.com

vii

TABLE OF CONTENTS

LIST OF TABLES ... ix

LIST OF FIGURES .. x

CHAPTER 1: INTRODUCTION ... 1

Statement of the Problem .. 1

Background ... 2

Objectives .. 3

Influences on Architecture Design .. 3

CHAPTER 2: HUMAN MODEL FRAMEWORKS .. 6

GOMS ... 7

Variants of GOMS .. 10

Importance of GOMS Analysis ... 11

Cognitive Perceptual Motor-GOMS ... 12

CogTool ... 12

ACT-R ... 13

ACT-R/PM .. 15

Soar.. 16

Other Considerations ... 19

Neural Networks ... 20

CHAPTER 3: SOAR BASICS.. 22

Production System Components ... 22

Working Memory .. 23

The Soar Processing Cycle .. 25

Input Phase .. 25

Decision Procedure ... 26

Parallel Operators .. 26

Goal Detection... 27

Instantiation and Operator Support ... 28

Reinforcement Learning .. 29

www.manaraa.com

viii

Impasses and Substates in Soar ... 30

Chunking ... 32

Semantic and Episodic Memory ... 32

CHAPTER 4: SOAREYE ARCHITECTURE AND BEHAVIOR 35

Data Publishing ... 35

Coordinate System Definition ... 36

World Model ... 37

Eye Movement .. 39

Instrument Uncertainty .. 40

Cockpit Configuration File.. 43

Passing Data to the Agent ... 43

Motor Movement Model ... 45

Fitt’s Law .. 46

CHAPTER 5: RESULTS AND ANALYSIS ... 48

Methodology ... 48

Scenarios ... 50

Regions of Interest .. 52

Link Analysis .. 57

Tool Verification ... 66

CHAPTER 6: SUMMARY AND FUTURE WORK ... 69

Summary ... 69

Future Research Areas .. 69

APPENDIX A: SMARTEYE PACKET DATA AND FORMAT 72

APPENDIX B: 737 COCKPIT DEFINITION FILE .. 77

REFERENCES ... 90

www.manaraa.com

ix

LIST OF TABLES

Table 1: Definitions of eye-related metrics .. 4

Table 2: Newell's Time Scale of Human Action .. 6

Table 3: Symbolic preference for selecting operators .. 23

Table 4: Orientation of the coordinate system .. 37

Table 5: Scenarios/tasks to collect data from SoarEye ... 50

Table 6: Region of Interest percentage comparison among scenarios 57

Table 7: Link analysis for straight-and-level flight .. 59

Table 8: Link analysis for left-hand turn .. 61

Table 9: Link analysis for right-hand turn .. 63

Table 10: Link analysis of a climb from FL280 to FL320 ... 65

Table 11: Comparison of SoarEye vs Actual Region of Interest Data 67

Table A.1: Data Types .. 73

Table A.2: SubPacket IDs ... 74

Table A.3: SubPacket item descriptions ... 75

www.manaraa.com

x

LIST OF FIGURES

Figure 1: Model Human Processor - memories and processors [1] 9

Figure 2: Byrne's ACT-R pilot model overview [25] ... 15

Figure 3: The SuperDroid and a schematic of the hardware used on the SuperDroid

for map generation [26] .. 18

Figure 4: Example part of the goal hierarchy of TacAir-Soar .. 19

Figure 5: Simple neural network illustration .. 20

Figure 6: Production System Structure [2] ... 22

Figure 7: Example of a Working Memory Element Structure .. 24

Figure 8: Example of structure of working memory [31] ... 24

Figure 9: The Soar processing cycle ... 25

Figure 10: Methods for Learning Procedural Knowledge [31] .. 29

Figure 11: Reinforcement Learning Cycle ... 30

Figure 12: Example calculation of Q Value for three operators (O1, O2, and O3) 30

Figure 13: Substate structures ... 32

Figure 14: Example of interaction between working memory and semantic memory 33

Figure 15: Processing and memory modules supporting episodic memory 34

Figure 16: High-level diagram showing SoarEye data flow ... 36

Figure 17: X & Y Axis of pilot looking forward in the cockpit 38

Figure 18: PFD with (x,y,z) coordinates specified for regions of interest 38

Figure 19: MCP with (x, y) coordinates specified for regions of interest (z=0.734 for

all MCP elements)... 39

Figure 20: Example Eye Gaze Vector Transition (Not to Scale)...................................... 40

Figure 21: Photograph of the retina of the human eye, with overlay diagrams showing

the positions and sizes of the macula, fovea, and optic disc ... 41

www.manaraa.com

xi

Figure 22: Example of the three different uncertainty decay types implemented in the

SoarEye model .. 42

Figure 23: Code sample of function create to add WME with an integer value 44

Figure 24: Subset of the SoarEye model input-link .. 45

Figure 25: Analysis of the movement of a user's hand to a target 46

Figure 26: OPL Boeing 737-800 flight deck simulator .. 49

Figure 27: High level network connection diagram of setup for data collection 50

Figure 28: Region of Interest percentage of SoarEye fixations during Scenario 1,

straight and level flight ... 53

Figure 29: Region of Interest percentage of SoarEye fixations during Scenario 2, the

90 degree left turn ... 54

Figure 30: Region of Interest percentage of SoarEye fixations during Scenario 3, the

90 degree right turn ... 55

Figure 31: Region of Interest percentage of SoarEye fixations during Scenario 4, the

climb to FL320 .. 56

Figure 32: Adjacency layout diagram of eye-movement link values between aircraft

instruments during an approach [4] .. 57

Figure 33: Adjacency layout diagram of SoarEye model eye movement among

instruments during straight-and-level flight.. 60

Figure 34: Adjacency layout diagram of SoarEye model eye movement among

instruments during a left-hand turn (scenario 2) ... 62

Figure 35: Adjacency layout diagram of SoarEye model eye movement among

instruments during a right-hand turn (scenario 3) ... 64

Figure 36: Adjacency layout diagram of SoarEye model eye movement among

instruments during a climb between FL280 and FL320 (scenario 4) 66

Figure A.1: Packet structure/format of the eye metric packets ... 72

www.manaraa.com

1

CHAPTER 1: INTRODUCTION

Statement of the Problem

Pilots can only make decisions and act on the information that is available to them

from inside and outside the cockpit. Understanding how pilots acquire and prioritize

information while conducting operations in aircraft is critical for addressing data gaps

that might be formed in a pilot’s mind.

This dissertation seeks to increase the understanding of how pilots acquire

information using an approach that hasn’t been used before. Fusing the Soar cognitive-

modeling software with a complex aircraft environment in X-Plane, a tool for

investigating such queries has been created to help answer these questions outside of a

human-in-the-loop environment.

Cognitive modeling is a field that has evolved over the last several decades,

starting with serious attempts by Card, Moran, Newell in the 1950s [1] to develop a

model that would satisfy behavior prediction of humans.

Research in aviation safety often involves conducting studies wherein airline

pilots are brought into a simulator environment to evaluate new procedures and

displays/notifications and to give feedback on what is useful and what is not useful from

the pilot’s perspective. It is an expensive endeavor to bring airline pilots into a simulator

facility as well as to staff the simulator for the duration of the study. It is important to

maximize the product of the study for the time and resources put into it. In order to

minimize waste while conducting such a study, elements of the proposed study could be

screened for effectiveness, and some great cost savings could be realized. One method for

www.manaraa.com

2

screening the design of the study would be to evaluate the scenarios in the simulation

with an artificial airline pilot controlled by a cognitive model.

A cognitive model for an airline pilot would support decision making and

interaction with a dynamic environment, in this case a commercial airline cockpit. This

would allow researchers to identify scenarios that are of interest before actual airline

pilots visit a simulation facility to participate in a study.

Background

There are a few different levels/layers of modeling a human in software: the

physical layer, the cognitive layer, and the knowledge layer. The cognitive architecture

layer exists at the interface between the physical layer and the cognitive layer. One of the

goals of cognitive modeling is creating a model of human behavior that closely matches

behavioral data such as error rates and reaction times.

Several models of human behavior have been developed and have evolved over

the last half century. Psychology-based models are designed to emulate the architecture

of human cognitive patterns to help decode stages of perception from knowledge retrieval

through decision evaluation to motor action execution.

Each style of cognitive model that has been developed takes different feature and

implementation approaches based on the researcher’s goals for the use of the model.

However, most of these models have many common elements that allow other

researchers to focus on the tasks they are interested in rather than thinking about the

lower-level programming details needed to implement the cognitive capabilities from

scratch. The breadth of models developed and their applications will be explored in

Chapter 2.

www.manaraa.com

3

Objectives

The objective of this dissertation research is the development and verification of a

cognitive model of a commercial airline pilot. Using X-Plane as the simulator

environment, the pilot model will be exposed to different types of scenarios and the data

collected from the model will be compared against data collected from human pilot

participants in previous studies. After the comparison of the data sets between the

cognitive model and actual human participants, an evaluation of future use of the

cognitive model will be performed and elaborated upon.

Influences on Architecture Design

There are three primary components that influence the design of the cognitive

architecture: environment, tasks, and agent structure. For this research topic and scope,

the environment will be confined to the cockpit of a Boeing 737-800 simulator with the

notion that this could be expanded to many different types of simulated cockpits in the

future. The tasks for this project will be kept to standard in-flight procedures such as

small changes in altitude and heading, but as with the environment, the tasks could be

expanded upon in the future. The agent structure will be covered extensively in Chapters

3 and 4 of this research, but the key components are that it has interfaces to its

environment and the knowledge to complete aviation-related tasks.

For this research, the “end state” or goal of the agent flying the airplane is not

explicit since the goal is just to maintain certain aspects of a state. While explicit

representation can be useful in choosing which operators to select, it is not a requirement

[2] for this model.

www.manaraa.com

4

This iteration of the model is not expected to produce scientifically significant

results for any one specific study at this time, but it does demonstrate that the framework

for a cognitive model for airline pilots is accurate for a number of use cases. This model

should be able to be expanded upon to achieve a higher fidelity for future uses to predict

pilot performance and, eventually, workload of pilots in a wide variety of situations.

Common effects of eye-scan pattern behavior that has been of research interest for

decades include fixation durations, number of fixations, saccadic movements, and scan

pattern changes. Definitions of eye-scan terms and relevant metrics can be found in the

Table 1 below.

Table 1: Definitions of eye-related metrics

Term Definition

Area of Interest An area of interest is a region over a field of view that is significant

due to a particular source of information that may be available there

for a human to look at. In an airplane cockpit, there could be

several areas of interest, such as the primary flight displays, mode

control panel, EICAS, and flight management system.

Fixation

Frequency

Fixations that are “a relatively stable eye-in-head position within

some threshold of dispersion (~2 degrees) over some minimum

duration (200ms), and with a velocity threshold of 15-100 degrees

per second” [3]. This shows a positive correlation to subject

workload similar to fixation total.

www.manaraa.com

5

Table 1 - continued

Gaze (or Dwell

Time)

Gaze is similar to fixations in that it is the grouping of fixations

within a single region of interest. The area around which a gaze is

calculated is dependent on the size of the area of interest.

Saccade A saccade is the movement of the eye from one fixation to the next.

The speed of a saccade is obtained by calculating the distance from

one fixation to the next and calculating the time difference to result

in an angular velocity in degrees per second.

Link Analysis A link analysis measures the relative strength among transitions of

fixations between any two areas of interest. This was a useful tool

that Fitts et al. [4] used in their study of eye movements of pilots

during instrument flight.

The research presented in this paper will also perform a link analysis and an

analysis of region of interest of the gaze of the software pilot model for different tasks.

The results of this analysis are covered in Chapter 5. Finally, Chapter 6 summarizes the

effort of developing this cognitive model as well as future work that can be pursued to

develop this capability further for projects outside of commercial aviation.

www.manaraa.com

6

CHAPTER 2: HUMAN MODEL FRAMEWORKS

Cognitive architectures instantiate “united theories of cognition” consisting of

implementations of theories of the mechanisms utilized by humans in processing

information. Since Newell articulated the goal of United Theories of Cognition in his

prominent book [5], a number of cognitive architectures have been developed, with

varying degrees of depth and breadth of model applications [6]. This section will provide

a quick overview of a few of the more common models used in human modeling.

 There are different types of goals of cognitive architecture research which can

generally be grouped into three categories: biological modeling, psychological modeling,

and AI functionality. Table 2 below illustrates the different groupings of cognitive

architectures and which time scales each type is best suited for.

Table 2: Newell's Time Scale of Human Action

Scale (sec) Time Units System Cognitive Category

107 Months Social

106 Weeks Social

105 Days Social

104 Hours Task Rational

103 10 Minutes Task Rational

102 Minutes Task Rational

101 10 Seconds Unit Task Cognitive

100 1 Second Operations Cognitive

10-1 100 ms Deliberate Act Cognitive

10-2 10 ms Neural Circuit Biological

10-3 1 ms Neuron Biological

10-4 100 us Organelle Biological

 There are several different modeling methods and scopes that cover several bands

of this scale. No one modeling method encompasses all of the bands however. To

www.manaraa.com

7

sufficiently model the behavior of an airline pilot, one does not need to get down to the

level of modeling neurons firing as there is not much intelligent action going on at that

level. These biological bands on the lower end of the time scale model what we know

about the brain: neurons, neural circuits, etc. They predict neural activity and cognitive

behavior. Two examples of models that detail this part of the spectrum are LEABRA [7]

[8], and SPAUN [9].

 Next there is psychological modeling tools and methods that target human

performance in a wide range of cognitive tasks. They predict human reaction time and

error rates for psychological tasks such as ACT-R [10] [11], EPIC [12], CLARION [13],

LIDA [14], CHREST [15], and 4CAPS [16].

 Finally, there are modeling techniques that emulate AI functionality and moves

closer toward human-level intelligence inspired by psychology and biology. The

emphasis is more on complex cognitive processing and longer time-scales (upwards of

hours). Examples of these models include Soar [17], Companions [18], Sigma [19] [20],

ICArUS [21], and CogPrime [22].

 Several candidate modeling techniques will be reviewed in the remainder of this

chapter. Their role in the development of human performance modeling is illustrated as

well as their benefits and drawbacks to being used in modeling pilot performance in

commercial cockpits.

GOMS

In 1983, Card, Moran, and Newell published a book titled The Psychology of

Human-Computer Interaction that helped bridge the gap for cognitive modeling between

www.manaraa.com

8

the science and useful applications. They recognized that the human-computer interface

at the time was rapidly becoming the most important domain in human factors practice

[1]. One of the more prominent models put forward in this book is called GOMS, or

Goals, Operators, Methods, and Selections rules. It is a specialized human-information-

processor model for human-computer interactions.

 Most of the earlier models were created with desktop computer applications in

which the computer only does something in response to an action by the user. Aircraft

cockpits don’t have such simple conditions; forces and other agents external to the pilot’s

control, including weather, mechanical systems, air traffic control, and traffic often

dictate the pace of the tasks to the pilot.

 GOMS reduces a user’s interactions with a computer to their elementary actions

(physical, cognitive, or perceptual). Goals are what the user intends to accomplish.

Operators are actions that are performed to reach the goal. Methods are sequences of

operators that accomplish a goal. There can be more than one method available to

accomplish a single goal. If this is the case, then selection rules are used to describe when

a user would select a certain method over the others.

www.manaraa.com

9

Figure 1: Model Human Processor - memories and processors [1]

 A GOMS estimate of a particular interaction can be calculated with little effort, at

little cost, and in a short amount of time if the average methods-time measurement data

for each task has been previously measured experimentally to a high degree of accuracy.

With a careful investigation into all of the detailed steps necessary for a user to

successfully interact with an interface, the measurement of how long it will take a user to

successfully interact with an interface is a simple calculation. Summing the times

www.manaraa.com

10

necessary to complete the detailed steps provides an estimate for how long it will take a

user to successfully complete the desired task. A sample of time estimates can be found

in Figure 1.

 None of the techniques address user unpredictability – such as user behavior

being affected by fatigue, social surroundings, or organizational factors. The techniques

are very explicit about basic movement operators, but are generally less rigid with basic

cognitive actions. In the real world, splits cannot be prevented, but none of the GOMS

models allow for any type of error. Further, all of the techniques work under the

assumption that a user will know what to do at any given point – so they apply only to

expert users, not novices.

 User personalities, habits, or physical restrictions (for example, disabilities) are

not accounted for in any of the GOMS models. All users are assumed to be exactly the

same. Extensions of the baseline GOMS model have been developed to allow the

formulation of GOMS models describing the interaction behavior of disabled users.

 Except for Keystroke Level Modeling (KLM), the evaluators are required to have

a fairly deep understanding of the theoretical foundations of GOMS, Cognitive

Complexity Theory (CCT), or Model Human Processor (MHP). This limits the effective

use of GOMS to large entities with the financial power to hire a dedicated human-

computer interaction (HCI) specialist or contract with a consultant with such expertise.

Variants of GOMS

 The plain, or “vanilla flavored” GOMS first introduced by Card, Moran, and

Newell is now referenced as CMN-GOMS. Keystroke Level Modeling is the next GOMS

www.manaraa.com

11

technique and was also introduced by Card, Moran, and Newell in their 1983 book [1].

This technique makes several simplifying assumptions that make it really just a restricted

version of GOMS. The third major variant of the GOMS technique is the Natural GOMS

Language (NGOMSL). This technique gives a very strict, but natural, language for

building GOMS models. The final variation of GOMS is Cognitive Perceptual Motor-

GOMS (CPM-GOMS). This technique is based on the MHP. The main advantage of

CPM-GOMS is that it allows for the modeling of parallel information processing by the

user; however, it also is the most difficult GOMS technique to implement.

Importance of GOMS Analysis

 Before applying the average times for detailed functions, it is very important that

an experimenter make sure he or she has accounted for as many variables as possible by

using assumptions. Experimenters should design the GOMS analysis for the users who

will most likely be using the system that is being analyzed. Consider, for example, that an

experimenter wishes to determine how long it will take an F22 Raptor pilot to interact

with an interface he or she has used for years. It can probably be assumed that the pilot

has outstanding vision and is in good physical health. In addition, it can be assumed that

the pilot can interact with the interface quickly because of the vast hours of simulation

and previous use he or she has endured. All things considered, it is fair to use “fastman”

times in this situation. Contrarily, consider a 65-year-old individual with no flight

experience, let alone fighter pilot experience, attempting to interact with the same F22

Raptor interface. It is fair to say that the two people would have much different skill sets,

and those skill sets should be accounted for subjectively.

www.manaraa.com

12

Cognitive Perceptual Motor-GOMS

 The CPM-GOMS was developed by Bonnie E. John while at the school of

Computer Science at Carnegie Mellon University in 1988. Bonnie John was a student of

Allen Newell. Unlike other GOMS variations, CPM-GOMS does not assume that the

user’s interaction is a serial process, and hence it can model multi-tasking behavior that

can be exhibited by experienced users. The technique is also based directly on the MHP –

a simplified model of human response.

 The tasks are first joined serially and then examined to see which actions can be

overlapped so that they happen in parallel. This technique facilitates representation of

overlapping and the very efficient “chunks” of activity characteristic of expert users. The

times estimated by CPM-GOMS are generally faster since they do not allocate as much

time to the “prepare for action” type of operations.

 This is the most difficult GOMS technique to implement. Therefore, it has the

problem of discrepancies between evaluators. Research is currently being conducted to

improve the CPM-GOMS technique so that it can be used without the evaluator having a

high-level understanding of the GOMS theoretical foundations.

CogTool

 A team at Carnegie Mellon University, headed by Bonnie John, has created an

open-source tool to support KLM analysis. CogTool was developed to enable low-cost,

rapid construction of interactive prototypes that focus on systems involving deliberate

commands that the user invokes by some motor action [23]. It automatically evaluates

user interface designs with a predictive human performance model (a “cognitive crash

dummy”). Types of systems include cell phones, handheld terminals, in-vehicle driver

www.manaraa.com

13

information systems, and computers that run desktop applications. Cog Tool has

increased the accuracy of the KLM because it applies the theory more consistently

through its “modeling by demonstration” approach, and has been reported to be within

about 10% of empirical data [24].

ACT-R

 The Adaptive Control of Thought-Rational (ACT-R) is a cognitive architecture

developed at Carnegie Mellon University. ACT-R is a proposed unified theory of

cognition realized as a production system designed to predict human behavior by

processing information and generating intelligent behavior itself. In short, the ACT-R

model for cognition tries to provide a comprehensive explanation for high-level cognitive

control behavior. ACT-R is a computation cognitive architecture that takes as inputs

knowledge about how to do the task, both procedural and declarative, and a simulated

world or environment in which to run.

 ACT-R has two types of long-term memory: declarative and procedural.

Declarative memory defines things that are factual in nature, such as “George

Washington was the first president of the United States” and “2+3=5.” The basic unit of

declarative knowledge is known as chunks. Procedural knowledge consists of production

rules that encode skills and take the form of condition-action pairs (if/then statements).

These production rules correspond to goals or sub-goals and mainly consist of retrieval

and storage of declarative knowledge.

 In ACT-R, a chunk’s activation decreases as a function of time since the chunk

was created and increases with the number of times the chunk has been retrieved from

memory. When retrieving items from memory, ACT-R looks at the most active chunk in

www.manaraa.com

14

memory; if it is above the threshold, it is retrieved, otherwise an “error of omission” has

occurred, i.e., the item has been forgotten.

 An important aspect of the ACT-R system is that it operates in real time: Each

covert step of cognition (production firing, retrieval from declarative memory) or overt

action (mouse-click, moving attention) has latencies associated with it that are based on

psychological theories and data. For example, firing a production rule typically takes 50

milliseconds, and the time needed to scan a part of a computer screen is calculated using

Fitt’s law. In this way, the system allows application of psychological knowledge in real

time.

 Fitt’s Law:

𝑇 = 𝑎 + 𝑏 log2 (
𝐷

𝑊
+ 1)

where:

 T is the average time taken to complete the movement.

 a represents the start/stop time of the device.

 b represents the inherent speed of the device.

 D is the distance from the starting point to the center of the target.

 W is the width of the target measured along the axis of motion. W can also be

thought of as the allowed error tolerance in the final position, since the final point

of the motion must fall within +/- W/2 of the target’s center.

From Fitt’s Law, the speed-accuracy tradeoff can be seen where targets that are smaller

and/or further away require more time to acquire.

www.manaraa.com

15

ACT-R/PM

 ACT-R is used primarily to model experiment psychology data. However, there is

a version of ACT-R that has also been used to model behavior in synthetic environments.

It was developed at Carnegie Mellon University and is called the ACT-R Perceptual

Motor (ACT-R/PM) model. The enhancements provide any model created with ACT-

R/PM the ability to interact with a simulated device such as a computer, driving/flight

simulator, video game, etc.

 The research from [25] developed a computational model of a closed-loop, pilot-

displays-aircraft system designed to evaluate the impact of the addition of a synthetic

vision system (SVS) to a commercial airliner cockpit on pilot’s attention-allocation

behaviors. ACT-R was used for the pilot model and was coupled to the flight simulator

package, X-Plane, via a low-level UDP network connection.

Figure 2: Byrne's ACT-R pilot model overview [25]

www.manaraa.com

16

Soar

Soar originally stood for State, Operator And Result, and was created by John

Laird, Allen Newell, and Paul Rosenbloom at Carnegie Mellon University, and is now

maintained by John Laird’s research group at the University of Michigan. The Soar

development community, over time, no longer regarded Soar as an acronym, which is

why it is no longer written in upper case. At Larid’s research group, graduate students

work on both cognitive model architecture improvements to Soar as well as finding new

applications for Soar.

The views of the cognition underlying Soar are tied to the psychological theory

expressed in Allen Newell’s book, Unified Theories of Cognition [5]. Soar is based on a

production system, much like ACT-R, using production rules similar to the form of

“if…then…” conditions. Solving of problems in Soar analyzes the problem space

(achievable states that can be reached by the system) for a goal state (the solution of the

problem). A search is conducted to find a solution that brings the system closer to its goal

state.

While Soar can be used to help understand cognition and solve problems with

production rules, it has a documented programmer interface that provides a means to

allow Soar agents to interact with external environments. It is this feature that made Soar

extremely desirable to develop the SoarEye pilot perception module.

There are several key abilities for controlling aircraft simulations that do not

coincide with the strengths of production systems, such as performing a large amount of

numerical calculations and optimization problems. These tasks need to be off-loaded to

an external interface that can be written in more traditional languages such as C++, Java,

www.manaraa.com

17

and Python. The Soar Markup Language (SML) allows simplified interaction of a Soar

agent with external environments and other software systems that complement Soar’s

strengths (e.g., neural networks, state estimation techniques, and object recognition

methods).

The SML protocol has been used for giving robots a form of cognition by

allowing them to make decisions based on sensor input from their surroundings. The

Cognitive Robots System (CRS) is an excellent example [26] in the last few years of how

embedded systems can take advantage of a production system architecture to create a

symbolic representation of the environment to a Soar agent.

For the CRS, three sensors and two infrared sensors are used to detect obstacles in

front of and to the sides of the SuperDroid. Wheel encoders installed on the two front

wheels are used to estimate position of the SuperDroid. Two web cameras are also

installed on the SuperDroid and implemented as a stereo pair to measure distances to

edge pixels. A laptop onboard receives all the sensor information and concentrates it for

the Soar model to process on the input branch of its working memory [9].

www.manaraa.com

18

Figure 3: The SuperDroid and a schematic of the hardware used on the SuperDroid for

map generation [26]

 Jones et al. [27] have used the Soar architecture to autonomously fly U.S. military

fixed-wing aircraft during missions in a simulated environment for the TacAir-Soar

project using Soar agents with 5200 production rules, 450 total operators, and 130

abstract operators. These agents were used as AI entities in simulated war games to help

create large-scale battles without requiring a large number of people. This helped

demonstrate the scalability of Soar to thousands of rules, due to the use of the Rete

algorithm [28]. The TacAir-Soar project also demonstrated that Soar is capable of

performing high-level activities, such as reasoning, using large agents in a simulated

environment with real-time constraints. Since cognitive architectures are able to model

general decision making, a single Soar agent can be used for multiple missions and can

be capable of using multiple approaches to the same problem.

www.manaraa.com

19

Figure 4: Example part of the goal hierarchy of TacAir-Soar

Other Considerations

 In software engineering, different steps use one or more representations [29]. For

instance, data flow diagrams (DFDs), entity life histories (ELHs), entity relationship

diagrams (ERDs), and process outlines (POs) are used in Structured Systems Analysis

and Design Methodology (SSADM), in the same way as use cases, activity diagrams, and

interaction diagrams are representations used in the Unified Modeling Language (UML).

It would therefore seem desirable for task analysis output representations to be in the

form of one or more of such software engineering representations or to be easily

translated into them. However, many task analysis methods [29] have been developed by

researchers with a psychological background and have focused mainly on the first steps

of user interface design, so their outputs often do not integrate well with those from

software engineering.

The classical software engineering distinction (adapted from IEEE-STD-610) is

between verification (verity that a clearly specified problem is solved properly) and

www.manaraa.com

20

validation (ensuring that what is done meets the actual requirements). Verification is

generally made by semi-automatic tools, while validation requires human interpretation.

Neural Networks

Another type of cognitive model is a neural network. This has become more

popular in the last couple of decades due to the processing power that has become

available in computers. Neural networks are “trained” to become highly skilled at one or

two tasks. These networks are fed massive amounts of historical training data from

previous experts conducting the same task that the network then “learns” from to adjust

the weights and biases of the network of artificial neurons. Training neural networks is a

time-intensive task that can take hours, days or weeks even with just a few variables to

observe.

Figure 5: Simple neural network illustration

In Figure 5, each circle represents a ‘neuron’ of a neural network. The leftmost

layer is called the input layer of the network and the rightmost, or output layer, which in

this illustration is just a single output neuron. The middle layers are called the “hidden

www.manaraa.com

21

layer” since they are not exposed to the world like the input or output layer is. In more

complex neural networks, there are several hidden layers in the middle of the network.

Since the expertise of a neural network is only as good as the training data that is

fed into it, extreme caution must be used in how neural networks are applied to general

problem solving. The neural network (named AlphaGo) that bested the world best Go

players in 2016, is highly skilled at playing the game Go, but would fail at chess, or any

other board game, for that matter. In much the same way, IBM’s Watson can become

highly trained to defeat the best human players in Jeopardy!, but would in no way

become a medical professional using the same training dataset.

www.manaraa.com

22

CHAPTER 3: SOAR BASICS

Due to previous successes with Soar design being used in task execution duration

on the order of minutes to hours and the relative ease of interfacing Soar agents with

external environments, Soar was selected as the cognitive architecture to use in this

research endeavor. In this chapter, a quick summary of the core components of Soar:

production memory, reinforcement learning, substates and impasses, chunking, as well as

semantic and episodic memory are presented. This will prepare for coverage of how the

SoarEye tool was constructed in the following chapter.

Production System Components

Figure 6: Production System Structure [2]

Long-term procedural knowledge is implemented in Soar as a series of if-then

rules, or production rules [30]. Figure 6 contains a block diagram of the structure of a

generic production system. The “if” part of a rule consists of conditions (on the left side

of the arrow in the long-term memory block) that must be satisfied by working memory

www.manaraa.com

23

for the rule to match. The “then” parts of the production rules are actions that add,

modify, or delete structures in working memory.

Preferences for production rules can be classified in Soar as seen in Table 3.

Table 3: Symbolic preference for selecting operators

Preference Syntax Meaning

Acceptable + All operators with acceptable preference are collected into the

candidate set

Reject - Any operator in the candidate set with a reject preference is

removed from the set

Better/worse >>/<< All operators in the candidate set that are worse than another

operators in the candidate set are removed from the set

Best > If there are any operators in the candidate set with best

preference, then all operators without best preference are

removed from the candidate set

Worst < If there are any operators in the candidate set without worst

preference, then all operators with worst preference are

removed from the candidate set

Indifferent = Indifferent preference specifies that all operators are equally

good and a random selection can be made between them

Working Memory

Working memory contains all of a Soar agent’s dynamic information about its

world and its internal reasoning. It contains sensor data, intermediate calculations, current

operators, and goals. In Soar, every element in working memory, or a working memory

element (WME), consists of three parts, an identifier, attribute, and value (which can be a

constant or another identifier) (See Figure 7). All of working memory is organized as a

graph structure in states that are connected and directed [31]. Every WME therefore is

connected directly or indirectly to a state symbol (see example in Figure 8).

www.manaraa.com

24

Figure 7: Example of a Working Memory Element Structure

Figure 8: Example of structure of working memory [31]

www.manaraa.com

25

The Soar Processing Cycle

 The Soar processing cycle, presented in Figure 9, shows the high-level sequence

of events when a Soar agent evaluates a situation. All the processes represented by

rectangles are performed by production rules. The round-cornered rectangles in Figure 9

are fixed task-independent processes. The input and output phases provide Soar’s means

to interact with an environment, while the decision phase chooses the current operator.

Figure 9: The Soar processing cycle

Input Phase

 During the input phase, new working-memory elements are added to reflect

changes in perception. To extract relevant sensory information from the external

environment (simulated vision, hearing, touch, or another type of interaction with another

program) and transfer it to working memory, a perception module must be written in a

language that interfaces with Soar, such as C++, Java, C#, or Python [2]. Similarly, to

initiate commands in an external environment, an output module must be created.

 The interface with perception and output systems is via working memory through

the input-link and output-link structures, which are substructures of the input-output (io)

state structure [2]. By having an area reserved for external input, Soar can distinguish

between structures created by perception and those generated internally by its own

reasoning.

www.manaraa.com

26

Decision Procedure

 The results of the decision procedure are either the selection of a new operator or

an impasse, which are discussed later in this chapter.

Parallel Operators

In Soar, only one operator can be selected at a time, forcing a sequential

bottleneck. This design decision dates back to the original tasks implemented in Soar in

which an operator’s taking a step in a problem space would generate a new state. With

that strategy, parallel operators would have generated multiple new states, pushing

selection knowledge to the selection of the next state.

Once Soar gained the capability to interact with external environments, the

restriction against parallel operators was maintained on the grounds that parallel

operators could have conflicting actions that would be difficult for an agent to detect and

recover from. Even with that restriction, there are multiple ways to generate parallel

action in Soar:

 Operator switching: As long as Soar is fast enough relative to the environment

(which is the case in most uses), Soar can switch back and forth between

operators that initiate independent external actions, giving the appearance of

parallelism in the environment, even though only one operator is selected at a

time [2].

 Overlapping output actions: for temporally extended actions that do not require

constant cognitive attention, multiple actions can be initiated either through a

sequential operator application or through mega-operators.

www.manaraa.com

27

Goal Detection

 There is no separate phase for goal detection in Soar. The knowledge to detect the

achievement of a goal can be encoded either as state elaborations or as a separate

operator. For more complex agents that can pursue multiple goals, goals can be created

by operators or operators can act as goals by being selected, but where there are no

application rules, the achievement of the operator is pursued in a substate (discussed later

in this chapter) so that the operator becomes a goal.

 The basic processing cycle starts by matching conditions of production rules

against the contents of working memory. This matching process determines which

production rules have all of their conditions satisfied by the elements in working

memory. If a rule tests whether working memory includes a representation of a blue

block and a yellow block, and those elements exist in working memory, the rule matches.

 The results of the matching process is a set of rule instantiations. There is one rule

instantiation for each successful match of a rule to working memory. The match process

can also compute which rules that previously matched no longer match. Although not

used in many rule-based systems, this ability to detect when a rule retracts is built into

Soar.

 The major computational cost of a production system is matching the rules against

working memory. The naïve approach is to compare all of the conditions of all the rules

to all elements of working memory on each cycle. This is an expensive approach to

matching rules, as the cost would be WC*R, where W is the number of elements in

working memory, C is the average number of conditions in each rule, and R is the

number of rules.

www.manaraa.com

28

 The Rete algorithm was designed to avoid this problem. Instead of matching all

conditions to all of the working memory in each cycle, Rete processes only the changes

in working memory. This method explicitly trades space for speed; Rete maintains a

memory of all partial matches for all rules and processes the changes in working memory

to update the partial matches and determine which rules completely match and which no

longer match. Given that there usually are only a small number of changes in working

memory during each cycle and that those changes only affect a small number of rules, it

is possible to create rule matchers that can efficiently process a very large number of

rules.

Instantiation and Operator Support

 The persistence of WMEs is determined by the type of rule that selected them. A

rule instantiation that does not test the current operator and makes changes in the state

will remove all WMEs it created whenever any of the WMEs tested in the conditions are

removed from working memory. This is called instantiation-support, or i-support.

 The other class of support, which leads to persistent WMEs, is called operator-

support, or o-support. All WMEs created by an operator-application rule have o-support

and persist until they are removed by the actions of the rule, or when they become

disconnected from the state through removal of other WMEs.

www.manaraa.com

29

Reinforcement Learning

Reinforcement learning (RL) is one of the core tasks in machine learning (ML). It

is one of the two main primary methods of learning procedural knowledge, as seen in

Figure 10. The other method is called “chunking” and will be reviewed later in this

chapter. Reinforcement learning allows an agent to modify or tune existing rules by

adjusting numeric preferences in operator-evaluation rules.

Figure 10: Methods for Learning Procedural Knowledge [31]

 RL algorithms are dependent on making adjustments to rules over long periods of

time and not from a single experience. This allows an agent to become robust to noise

with the agent’s interaction with the environment in which it is operating in over time. A

simple illustration of the RL process cycle can be found in Figure 11. Inside the agent,

there is a value function, called the Q function, which maintains the current expected

reward for every action. Referring to this value function, the agent tries to select an action

that will maximize the future reward.

www.manaraa.com

30

Figure 11: Reinforcement Learning Cycle

 All the numeric preferences created for an operator are added together to evaluate

the Q value for that operator. In Soar, the symbolic preferences are given priority as that

provides boundaries of the desirability of the operators. Then after the symbolic

preferences have filtered out the desired operators, the Q values are used to select from

the remaining operators. Figure 12 shows an example of three operators and their

calculated Q values. In this example, O1 would be the most likely selected operator,

although O2 and O3 are still possible as well. The exact probability of operator selection

depends on which selection scheme is chosen by the agent designer.

Figure 12: Example calculation of Q Value for three operators (O1, O2, and O3)

Impasses and Substates in Soar

 If an agent always has sufficient knowledge, the model will just do the task at

hand. There is no planning or simulation of external actions, no reasoning/simulation

www.manaraa.com

31

about other agents/entities, no subgoals for task decomposition, and no reasoning about

reasoning (metacognition). Metacognition arises from scenarios where there is

insufficient or conflicting knowledge and the model has to take a step back and create a

separate state from which to reason (without disrupting the original reasoning). This

process of learning compiles metacognition into direct knowledge for future situations.

 An impasse arises if there is insufficient/conflicting procedural knowledge to

select an operator. In Soar, there are four ways in which an impasse can manifest itself:

- [state no-change] No operator is proposed

- [operator tie] Multiple operators are proposed by insufficient preferences to select

between them

- [operator no-change] An operator is selected, but it can’t be applied by a single

rule

- [operator conflict] Multiple operators are proposed with conflicting better/worse

preferences

To resolve any of these three types of impasses, a substate is created. The substate

created is a framework for deliberate reasoning and accessing additional knowledge

sources (long-term memories, external environment, or internal reasoning (planning)) to

resolve the impasse. An impasse is considered resolved when results, sometimes through

recursive impasses, lead to a decision.

Figure 13 illustrates the WMEs that are created for a tie impasse among three

operators (O31, O32, and O33) in state S20. Soar creates the substate identifier S23 and

the WMEs as well as augmentations with the type of impasse (no-change, conflict, or tie)

www.manaraa.com

32

and an “attribute” augmentation that indicates if the cause is “state” or “operator.”

Substates in Soar are managed by the architecture and cannot be created/modified/deleted

by rules.

Figure 13: Substate structures

Chunking

 The addition of using substates to resolve impasses is useful, but the problem is

that, by itself, the knowledge discovered with the substates is lost after each problem

solving episode. Chunking is Soar’s first learning mechanism and is the capability to

build new rules that summarize processing. These new “chunks” of rules are built as soon

as a result is produced. There is one chunk for each result, where a result consists of

connected WMEs that become results at the same time. Soar will only learn what it

“thinks” about and is impasse driven; in other words, learning arises from a lack of

knowledge.

Semantic and Episodic Memory

 Semantic memory in Soar is designed to support deliberate storage and retrieval

of long-term “objects,” features, and relations. Semantic memory is similar to working

www.manaraa.com

33

memory in that it consists of symbolic triples (Figure 14); however, attributes cannot be

identifiers, and the resulting graph is not necessarily connected. Semantic memory is

disabled by default in Soar and needs to be explicitly turned on by a user of Soar. Agents

can acquire and store semantic knowledge either manually via a user using the command

line (especially useful for loading larger external data sources), or via deliberate (via

rules) addition/modification by the agent.

Figure 14: Example of interaction between working memory and semantic memory

 Since semantic memory can become very large, it was implemented with a

SQLite backend so it has the ability to save semantic stores to disk and use disk-based

databases. However, this often causes semantic memory to be the slowest portion of most

Soar models.

Episodic memory is a form of a weak learning mechanism in Soar. When enabled,

it automatically captures, stores, and temporally indexes agent state to create an

www.manaraa.com

34

autobiographical prior experience memory structure. Episodic memory is what you

“remember,” and semantic memory is what you “know.” As with semantic memory,

episodic memory representation is similar to working memory in that it consists of

symbolic triples and attributes cannot be identifiers (Figure 15). Structures within an

episode are connected; separate episodes are disconnected.

Figure 15: Processing and memory modules supporting episodic memory

Episodic memory could have a role in a pilot model by storing and retrieving

times when it last saw a specific configuration of the autopilot to anticipate the

outcome/behavior and environmental dynamics in similar situations. Just as is the case

with semantic memory, the goal of episodic memory is to support a form of long-term

memory that interacts with working memory for real-time agents that have long lifespans

(hours to days).

www.manaraa.com

35

CHAPTER 4: SOAREYE ARCHITECTURE AND BEHAVIOR

This chapter explores the development of the eye-movement behavior for the pilot

model. There are some constraints to the cognitive model software that make it easier to

unload some tasks to external pieces of software. The mechanics of eye movement are

math oriented, and Soar is better suited for non-math behavior. The software tool

SoarEye, which brings everything together, was designed to deal with the eye-movement

mechanics. The commands for eye movement still come from Soar, but the

implementation of how the eyes move from point A to point B is done inside of SoarEye

and not the cognitive model.

Data Publishing

 First, the eye-movement model needs to capture the metrics needed for analysis.

Ideally, they should match the metrics that would be collected from actual airline pilots.

The system that the Operator Performance Laboratory (OPL) has used in the 737

simulator for numerous studies is called SmartEye. The SmartEye system reports on the

3D coordinates of several facial features and eye metrics and publishes that as User

Datagram Protocol (UDP) packets at 60 hertz. The Cognitive Avionics Tool Set (CATS)

data collection system picks up those packets and stores them in a Structured Query

Language (SQL) database with a timestamp for subsequent analysis.

 The pilot-model interface has been coded so that it also sends out the SmartEye

system packets in the exact same format, so the CATS data system can collect eye

movement data as if a real human were being eye tracked. This makes data collection

trivial, as CATS was already designed to collect and store these UDP-formatted packets.

The SQL database can be queried for eye-tracking data for subsequent analysis as would

www.manaraa.com

36

be done with regular human subject-matter expert participants in studies conducted in the

simulator environment as well.

Coordinate System Definition

The coordinate system for the pilot model implemented the same coordinate

system that the SmartEye system uses so the data-recording system saw the data exactly

as if it were coming from a real human in the cockpit. This is defined with a world model

in 3D space using x, y, and z coordinates.

Figure 16: High-level diagram showing SoarEye data flow

www.manaraa.com

37

Table 4: Orientation of the coordinate system

Axis Orientation

X Positive X to the left of the pilot facing forward

Y Positive Y upwards towards the roof of the plane

Z Orthogonal to the XY plane with positive Z toward the nose of the aircraft

World Model

The world model of the 737 simulator was constructed from measuring key

instruments/controls with respect to the world origin (0, 0, 0), which is located near

where the pilot’s head would be in the cockpit. Using the coordinate system defined in

the previous section, we can see that looking straight ahead would “see” things to the left

with a positive X value and things to the right with a negative X value. Things that are

above the pilot’s head would be seen with a positive Y value, and any items below the

pilot’s head would have a negative Y value. A visual representation of a pilot sitting in

the left seat of the aircraft looking forward illustrates the X & Y axes in Figure 17.

Two primary interfaces of concern in the world model for the SoarEye software is

the primary flight display (PFD) and the mode control panel (MCP). Figure 18 and

Figure 19 illustrate the coordinates for various elements of the PFD and MCP,

respectively, as they were measured in the OPL simulator.

www.manaraa.com

38

Figure 17: X & Y Axis of pilot looking forward in the cockpit

Figure 18: PFD with (x,y,z) coordinates specified for regions of interest

www.manaraa.com

39

Figure 19: MCP with (x, y) coordinates specified for regions of interest (z=0.734 for all

MCP elements)

Eye Movement

 When an event triggered either internally via the SoarEye tool or via a command

from the Soar agent itself causes a command to move the eyes from one fixation to the

next, a short series of steps takes place. A simple example will illustrate these steps as

seen in Figure 20. The calculations for eye gaze vectors, angles, and saccade movements

between fixations is done in the SoarEye tool and not the Soar agent.

Assume that the pilot model is currently fixated on the LNAV engage button on

the Mode Control Panel (MCP) and Soar issues a command to look at the attitude

indicator on the primary flight display (PFD). The 3D coordinates for both the left and

right eyes are known, as are the coordinates of the current fixation

(MCP_LNAV_Engage) and the goal of the next fixation (PFD_Attitude_Indicator). Gaze

vectors for both the current fixation and the goal fixation are easily calculated. Next, the

angle between those two vectors is calculated (in this case, it is about 43.54°). Finally, the

www.manaraa.com

40

time for the eyes to traverse the angle between those two locations is assumed to travel on

the shortest path between the current and goal fixation points. Again, for this particular

case, it takes the eyes approximately 0.22 seconds (assuming a saccade speed of about

200° per second).

Figure 20: Example Eye Gaze Vector Transition (Not to Scale)

Instrument Uncertainty

 Every instrument in the cockpit displays real-time data of the aircraft. However,

the human is only capable of perceiving a small selection of all the instruments due to the

simple fact that the human eye can only focus in about a 1.5 degree field of view [32].

www.manaraa.com

41

This is because the central region of the human eye is where the foveal vision has a

densely packed region of cones for near 100% visual acuity (Figure 21). The Soar pilot

interface emulates this by only providing updates to the Soar agent of whatever

instrument it is currently looking at with the model’s eyes. Once the pilot looks away

from a particular instrument, it no longer has the 100% certainty of its value/state.

Figure 21: Photograph of the retina of the human eye, with overlay diagrams showing the

positions and sizes of the macula, fovea, and optic disc

 Some instruments are capable of changing faster than others, so each channel can

be set up with its own unique decay rate. The type of decay can also vary per instrument,

as each instrument changes at different rates, and within an instrument, depending on

phase of flight. An example is that the altimeter of an aircraft may not change much or at

www.manaraa.com

42

all during a cruise phase of a flight, but it can change dramatically during a

descent/approach into an airport. While all three decay types depicted in Figure 22, only

the Type II (linear) decay was used for the scenarios outlined later in this paper.

Figure 22: Example of the three different uncertainty decay types implemented in the

SoarEye model

There are four different visually guided saccade movement categories: visually

guided saccade, antisaccade, memory-guided saccade, and predictive saccade. Of these

four categories, only memory-guided saccades for prescribed procedures and visually

www.manaraa.com

43

guided saccades (scanning) have been implemented in the SoarEye model. A complete

list of the eye metrics of the data packets (and their definitions) from the SoarEye model

can be found in Appendix A.

Cockpit Configuration File

The SoarEye model needs to accommodate a wide variety of aircraft types, but

every aircraft type will have a different physical layout of instruments and controls. In

order to adapt to this reality, an aircraft-specific configuration file can be made for as

many aircraft as needed. To make a fair comparison to the simulator environment at the

OPL, an aircraft file for a Boeing 737-800 cockpit was developed using the physical

dimensions of the 737 simulator located at the facility. This required dozens of

measurements with respect to the world origin to determine the location of dozens of

controls and instruments related to basic aircraft tasks.

 These measurements were taken down to the millimeter and placed into the

Extensible Markup Language (XML) file (see Appendix B). Every region of interest

(ROI) was given a name as well as its x, y, z world coordinates in meters. A certainty

decay value and decay type is also specified per instrument in this file. This allows a user

of the SoarEye tool to customize the parameters for uncertainty as they see fit for the

particular aircraft they are defining in that file. There is no one correct value for any

instrument and it may take some experimentation to find a set of values that works for the

user of the tool.

Passing Data to the Agent

 Data needs to be passed along from the SoarEye interface to the Soar agent. This

is done via the input-link of the Soar agent as specified in the previous chapter. Figure 24

www.manaraa.com

44

shows an example of what the input-link branch of the WMEs of the pilot agent would

look like. There are two elements added to the input-link for every instrument that the

SoarEye controller is aware of. Those two elements would have the value/state of the

instrument specified and another for the certainty of the instrument.

 Using the SML .dll resource in the C# project permits simple function calls to add

new WMEs as seen in the example in Figure 23. Every time the update Soar timer is

triggered in the application, all of the WMEs that need to be updated are removed and

then re-added with their new values. This is because a WME in Soar cannot be modified;

it can only be removed or added.

Figure 23: Code sample of function create to add WME with an integer value

In Soar there is no pre-defined structure on the input-link, which is up to the

designer/programmer of the agent. For this application, a simple structure of one element

per variable is added to the input-link branch of working memory. A sample subset of

what that structure looks like can be found in Figure 24. With these values present in

working memory, the production rules can make decisions based on what it has as its

most recent value for each instrument/control relevant to the task being completed.

www.manaraa.com

45

Figure 24: Subset of the SoarEye model input-link

Motor Movement Model

For the purposes of this project, a high-fidelity motor movement model of hand

movements was not required. A more simple approximation of hand and arm movement

is required only to create the appropriate delay in manipulating controls in the cockpit. A

reasonable approximation of time for a hand to move from “point A” to “point B”

www.manaraa.com

46

(translational motion) is to use Fitt’s Law. Fitt’s Law was introduced in Chapter 2 while

discussing ACT-R visual model performance and is presented here again:

Fitt’s Law

The equation for Fitt’s law [33] is defined as follows:

𝑇 = 𝑎 + 𝑏 log2 (
𝐷

𝑊
+ 1)

where

 T is the average time taken to complete the movement.

 a represents the start/stop time of the device.

 b represents the inherent speed of the device.

 D is the distance from the starting point to the center of the target.

 W is the width of the target measured along the axis of motion. W can also be

thought of as the allowed error tolerance in the final position, since the final

point of the motion must fall within ±W/2 of the target’s center.

Figure 25: Analysis of the movement of a user's hand to a target

www.manaraa.com

47

Figure 25 shows how D and W are determined with a simple start point and the target is

drawn. From Fitt’s law, the speed-accuracy tradeoff can be seen where targets that are

smaller and/or farther away require more time to acquire.

 For the SoarEye tool, it was assumed that each target for the hand was

approximately 1 cm across in the direction of motion. The tasks that the SoarEye model

is asked to perform for the scope of this research only involve pressing buttons and

rotating dials on the MCP, all of which are approximately 1 cm across.

 In 1994, Kondraske [34] wrote a paper building upon Fitt’s translational motion

model to also account for angular motion. This more comprehensive model could be

incorporated in the future to predict performance in tasks that involved one or more

jointed body segments with even more precision.

www.manaraa.com

48

CHAPTER 5: RESULTS AND ANALYSIS

Methodology

 The SoarEye model was tested with the Operator Performance Laboratory’s 737-

800 flight simulator (Figure 26) located at the Iowa City airport. The 737-800 simulator

is comprised of full glass cockpit displays, 180 degree outside visual projection system, a

mode control panel, driven throttle quadrant, hardware control display units (CDUs) with

a functional flight management system (FMS) and enhanced display control panels

(EDCPs). On the glass cockpit displays, there is a left and right seat PFD, left and right

seat multi-function display (MFDs), and upper and lower engine indicating and crew

alerting system (EICAS). For purposes of working with and initial evaluation of the

SoarEye tool, only the left/captain subset of these systems is considered. The right/first

officer (FO) side of the cockpit would normally be used by the first officer, which isn’t

considered here.

www.manaraa.com

49

Figure 26: OPL Boeing 737-800 flight deck simulator

 The SoarEye model connects to the simulator via XPUIPC software which allows

SoarEye to access memory offsets containing the variables of the flight simulator that are

of interest. Since the XPUIPC application transmits simulator state variables via UDP

packets, the SoarEye and Soar agent can run either on the same machine as X-Plane or on

any computer connected to the same network as the computers running the simulator. For

the experimental setup, SoarEye was run on a laptop using Windows 10 with an i7

processor and 8.0GB of RAM so as not to interfere with simulator performance and vice

versa. An illustration depicting a high-level architecture of the data collection setup can

be found in Figure 27.

www.manaraa.com

50

Figure 27: High level network connection diagram of setup for data collection

Scenarios

 To test the SoarEye model with this configuration, four different scenarios/tasks

were designed to exercise the model, collect and analyze data from. They are listed in

Table 5 below.

Table 5: Scenarios/tasks to collect data from SoarEye

Scenario 1 Straight and Level flight at 28,000 feet, 270 heading

Scenario 2 Left-hand turn

Scenario 3 Right-hand turn

Scenario 4 Climb from 28,000 feet (FL280) to 32,000 feet (FL320)

www.manaraa.com

51

 Scenario 1 is a simple baseline task of the aircraft flying in cruise configuration.

This was selected for the simple reason that the pilot’s primary job is to observe the

automation flying the aircraft for the pilot and no motor action is required by the pilot.

This allowed data collection of a pure eye-gaze only task to compare to the next three

tasks. A cruise altitude of 28,000 feet (FL280) and heading of 270 degrees (west) were

selected.

 Scenario 2 is also a simple task of performing a left-hand turn. This tasks consists

of maintaining altitude (staying in vertical navigation (VNAV)), and having the SoarEye

model select heading mode (HDG) on the MCP and dial a new heading (90 degrees left

of current heading). The pilot monitors the aircraft heading as the turn is executed

through the aircraft leveling wings.

 Scenario 3 is nearly identical to Scenario 2 in that it’s a turn but in the opposite

direction (right). Just as in the previous scenario, the pilot maintains altitude (staying in

VNAV), and selected the aircraft into heading mode (HDG) on the MCP. This task

should show very similar eye gaze metrics since nearly all the same tasks are completed.

 Scenario 4 is a climb from 28,000 feet (FL280) to 32,000 feet (FL320). This

scenario could occur in the real world for a number of reasons (avoiding turbulence,

traffic, convective weather avoidance, etc.). However, the reason is not important for the

SoarEye data collection as the actions taken to complete the task would be the same

regardless. The pilot turns the altitude knob on the MCP to the target altitude (FL320)

and changes the cruise altitude in the flight management system by entering the new

altitude into the control display unit (CDU). The aircraft then enters a climb and the pilot

monitors the aircraft until it levels off at the new altitude.

www.manaraa.com

52

 Each scenario was run in the simulator 10 times. The data collected in CATS was

compiled and inserted into a spreadsheet separated by scenario. Tables were then

organized for both area of interest (AOI) analysis and a link analysis. The results of those

analyses are presented in the following sections.

Regions of Interest

 Region of Interest is one mechanism of analyzing the eye gaze data and compare

it to other sets of data to gauge how close to actual pilot performance the SoarEye model

is. For Scenario 1 of straight and level flight, Figure 28 highlights what regions of interest

the SoarEye model was fixating on. This makes sense that the MCP items accounted for

less than 7% of the fixations in areas of interest as there is nothing there that requires the

pilot’s input/attention during straight and level flight.

www.manaraa.com

53

Figure 28: Region of Interest percentage of SoarEye fixations during Scenario 1, straight

and level flight

Figure 29 shows what the SoarEye model fixations are during Scenario 2, a left

turn of 90 degrees. Note the increase in amount of time spent looking at the captain

navigation display. This is due to the Soar model checking more frequently the heading

of the aircraft to verify correct operation of the flight management system. There are also

some noticeable increases in fixations on the mode control panel. This is from the pilot

model needing to switch the aircraft over to heading mode and dial in the 90 degree turn

left. Very similar changes between straight and level and Scenario 3, the 90 degree turn

right, can be found in Figure 30.

www.manaraa.com

54

Figure 29: Region of Interest percentage of SoarEye fixations during Scenario 2, the 90

degree left turn

 Figure 31 shows the SoarEye model fixations during scenario 4, the climb from

FL280 to FL320. The largest difference between scenario 4 and scenario 1 is the

decrease in fixation time on the captain navigation (Capt_Nav) display. The two new

fixations regions of the PFD introduced are the altitude bug setting and the vertical speed

indicator. The altitude bug becomes part of the scan pattern for the model once a new

altitude is selected in the MCP to ensure the autopilot is targeting the correct altitude. The

pilot model looks at the vertical speed indicator as part of the scan pattern to ensure the

aircraft is in fact climbing and to ensure the rate slows down once aircraft reaches the

target altitude (FL320).

www.manaraa.com

55

Figure 30: Region of Interest percentage of SoarEye fixations during Scenario 3, the 90

degree right turn

Table 6 summarizes the region of interest percentages among the four scenarios.

The regions of interest that comprise the overall PFD and MCP were consolidated for

ease of comparison as not every component within each was used in each scenario. The

most significant item of note from this table was the difference between the baseline

(scenario 1) and the scenario that the pilot model performs the climb (scenario 4). There

was an increase of nearly 7% of fixations on the PFD during the climb compared to the

baseline. Digging into the PFD components of the display, the increase of 7% to the PFD

can be attributed to the fixations on the altitude bug setting and vertical speed indicator

which were not part of the scan pattern during scenario 1.

www.manaraa.com

56

Figure 31: Region of Interest percentage of SoarEye fixations during Scenario 4, the

climb to FL320

As a consequence of the increase in attention to the PFD, the navigation display

saw a drop-off of nearly 5% of fixations during the climb. The EICAS also saw a

marginal drop in fixations during the climb of approximately 3% (14% to 11%). There

were only minor changes of approximately 1% among all the scenarios for the other

regions of interest (Captain CDU, outside visual, MCP).

www.manaraa.com

57

Table 6: Region of Interest percentage comparison among scenarios

 Scenario 1 Scenario 2 Scenario 3 Scenario 4

PFD 27% 31% 31% 34%

MCP 14% 12% 13% 15%

Capt_Nav 18% 17% 17% 12%

EICAS 14% 13% 13% 11%

Capt_CDU 18% 18% 17% 19%

OSV_Ahead 9% 9% 9% 9%

Link Analysis

A link analysis was also done on the data collected from the SoarEye model for

all four scenarios. This counts the raw number of links/transitions between regions of

interest. A link is defined as a fixation from one region on interest, followed by a

saccade, to another fixation on another region of interest. This link analysis was

conducted as a one-way transition (e.g. a transition from the MCP to the EICAS is unique

from a transition from the EICAS to the MCP). These types of analyses have been done

for years with some of the earlier ones conducted by [4]. An example illustration of what

the link analysis looked like from that study can be found in Figure 32.

Figure 32: Adjacency layout diagram of eye-movement link values between aircraft

instruments during an approach [4]

www.manaraa.com

58

AOI transition data was collected within SoarEye and exported to a spreadsheet

for analysis. Table 7 contains the data for link analysis during Scenario 1, straight-and-

level flight. The numbers within these tables add up to 100% and represent the

percentage values that fixations move from one AOI to the others.

www.manaraa.com

59

Table 7: Link analysis for straight-and-level flight

www.manaraa.com

60

 An adjacency layout diagram was constructed for straight-and-level flight was

generated from the data produced by SoarEye. Figure 33 illustrates the links between

AOI for any that had a frequency percentage greater than 1%. Links are color-coded to

depict the ranges of frequency, as shown in the legend within the figure.

Figure 33: Adjacency layout diagram of SoarEye model eye movement among

instruments during straight-and-level flight

An adjacency layout diagram was constructed for scenario 2 (left-hand turn) by

data that was generated from SoarEye. The data for the left-hand turn can be found in

Table 8. Figure 34 illustrates the links between AOI for any that had a frequency

percentage greater than 1%. Links are color-coded to depict the ranges of frequency, as

shown in the legend within the figure.

www.manaraa.com

61

Table 8: Link analysis for left-hand turn

www.manaraa.com

62

Figure 34: Adjacency layout diagram of SoarEye model eye movement among

instruments during a left-hand turn (scenario 2)

 A link-analysis was also performed on the eye tracking data collected from the

SoarEye model during a right-hand turn as well. The data can be found in Table 9, and

resulting adjacency layout diagram in Figure 35. The data from the link-analysis was near

identical to what was found in the left-hand turn (scenario 2). This corroborates what was

expected since the exact same production rules to drive eye movement in the Soar agent

were used regardless if the turn was left or right handed.

www.manaraa.com

63

Table 9: Link analysis for right-hand turn

www.manaraa.com

64

Figure 35: Adjacency layout diagram of SoarEye model eye movement among

instruments during a right-hand turn (scenario 3)

Finally, a link analysis was performed on the data collected from running scenario

4, a climb from FL280 to FL320. Data can be found in Table 10 and the adjacency layout

diagram can be found in Figure 36 for this scenario.

www.manaraa.com

65

Table 10: Link analysis of a climb from FL280 to FL320

www.manaraa.com

66

Figure 36: Adjacency layout diagram of SoarEye model eye movement among

instruments during a climb between FL280 and FL320 (scenario 4)

Tool Verification

To establish a reference to look at the accuracy of the SoarEye model, data

collected from a simulator study conducted in August of 2018 at the Operator

Performance Laboratory was analyzed. This data collection effort took place in the same

Boeing 737 simulator that the SoarEye model was connected to for its data collection

effort. This study collected eye tracking data from seven (N = 7) commercial airline

pilots performing an assortment of maneuvers while on autopilot. The eye tracking data

collected from the pilots was done with a Dikablis head-worn eye tracker and the CATS

data collection system. All seven of the pilots were Boeing qualified (first officers and

captains) at the time of the data collection.

www.manaraa.com

67

This simulator study with the airline pilots was for the evaluation a new type of

system display in the cockpit to assist pilots in identifying autopilot mode change

behaviors quickly. In order to make a comparison to the standard setup, half of the

scenarios for each pilot were done with the new display available. The other half of the

scenarios were done with the simulator configured in a standard setup to be used as a

baseline. For purposes of the research in this chapter, only the eye tracking data from the

simulator runs with the baseline configuration were used. A comparison of the data

collected from the SoarEye model and the airline pilots can be found in Table 11.

Table 11: Comparison of SoarEye vs Actual Region of Interest Data

 Scenario 1 Scenario 2 Scenario 3 Scenario 4

 SoarEye Pilots SoarEye Pilots SoarEye Pilots SoarEye Pilots

PFD 27% 46.4% 31% 22.0% 31% 39.0% 34% 16.9%

MCP 14% 1.0% 12% 1.9% 13% 0.6% 15% 3.7%

Capt_Nav 18% 20.3% 17% 27.8% 17% 30.0% 12% 16.0%

EICAS 14% 0.5% 13% 0.5% 13% 0.0% 11% 0.1%

Capt_CDU 18% 7.0% 18% 4.9% 17% 7.3% 19% 2.2%

OSV_Ahead 9% - 9% - 9% - 9% -

Other - 24.0% 41.4% 22.7% 60.7%

The data collected from the airline pilots’ shows that of the regions of interest

tracked in the simulator, the PFD and the NAV displays were the most focused on

regions of interest which generally agreed with what the SoarEye model predicted.

However, the margins by which the airline pilots looked at the PFD and NAV were far

greater than what the SoarEye model predicted. Another data point that stands out is that

the airline pilots rarely looked at the EICAS display. In none of the scenarios did the

pilots look at the EICAS for even more than 1% of the scenario duration. This makes

some sense as the EICAS would primarily be consulted during engine run-up on takeoff

and if there were cautions/warning/alerts that need to be addressed in non-normal

www.manaraa.com

68

situations. Neither of these events were part of the four scenarios. The production rules in

the Soar model spent far more time gazing at components inside of the EICAS which was

a major contributor to the discrepancy.

The SoarEye model production rules also estimated a greater period of time

required to complete tasks on the CDU and MCP than what the airline pilots actually did.

The estimates for task completion in the SoarEye model for CDU and MCP procedures

need to accommodate faster execution times to emulate expert behavior in the future.

In summary, there are three big differences between the SoarEye model and the

airline pilot behavior witnessed in the simulator across these four scenarios. First, while

pilots did have the EICAS display as part of their scan pattern, the dwell time was very

short (less than a second) as they were only glancing at it to verify there wasn’t a

caution/warning/alert that needed to be addressed. Second, the speed at which pilots

completed steps on the CDU and MCP was much quicker than the SoarEye model

predicted. This could be addressed with adjustments to execution times of the Soar

production rules that approximates the behavior of a novice pilot. Third, in the simulator,

there are several conversations that the airline pilots have with the copilot in the right seat

of the simulator. When a pilot talks with their copilot, their eyes concentrate on their

cockpit companion and not the instrumentation. The SoarEye model does not

accommodate for this event (talking with a copilot) at this time which in turn, inflates the

percentages of all regions of interest across the board. Future iterations of the SoarEye

model will need to take this into account for more realistic eye scan behavior as

conversations with other crew members is essential in today’s cockpit environments and

should not be ignored.

www.manaraa.com

69

CHAPTER 6: SUMMARY AND FUTURE WORK

Summary

 This project has shown that it is possible to obtain datasets of simulated eye scan

behavior to help researchers identify opportunities to design scenarios for human subject

matter experts in simulator studies. The SoarEye model demonstrates that a cognitive

model driven software tool can be integrated with a simulated environment and data

collection system to complete and analyze a wide-range of tasks that humans could

perform. The region of interest, link analysis and model verification demonstrated that

the model output, with adjustments, could reasonably approximate what would be

expected of a human pilot sitting in the cockpit of the same aircraft/simulator.

Future Research Areas

 Throughout the course of this project, a number of issues and uses were identified

which could be explored in the future. Firstly, only a small subset of tasks/scenarios were

evaluated for this dissertation. This was due to the complexity of breaking down and

converting task analysis for human operators into Soar rules in the cognitive model.

Diagnosing behavior within Soar working with a real-time environment/simulation is an

intensive endeavor. Future work should be expanded to explore a wider variety of tasks

by adding more Soar rules to the SoarEye model.

 Another key issue that could be investigated is how efficiently cockpits are

designed. By doing a link-analysis of the scan pattern, it could be determined if there are

instruments/controls in the cockpit that are frequently used together, but not closely

spaced physically. This could be useful in both existing cockpit designs and evaluation of

new cockpit design layouts for future aircraft.

www.manaraa.com

70

 As was mentioned in the methodology section, the analysis of the SoarEye tool

was constrained to the captain’s perspective (left seat). Further research could be done

with two instances of SoarEye running simultaneously with a concurrent simulation to

emulate the perception of a flight crew conducting the same flight. Pursing research with

simulation perception and cognitive modeling of a flight crew could result in new

insights into optimizations of procedures by eliminating redundant checks and/or fixing

oversights in attention deficits of other items on checklists. In the discussion of the tool

verification in Chapter 5, it was noted that the interaction of flight crew plays a key role

for flight crews. Even verbal communication among crew has a large influence on visual

attention, can disrupt eye scan behavior and needs to be taken into account.

 The saliency of pilot perception in the cockpit is an additional capability that

would be desirable for the SoarEye model. Being able to integrate mechanisms into the

visual system of the pilot model to recognize visual events (new objects, changes in

luminance, etc.) that might capture attention not in the line of sight, has been researched

by many over several decades [35]. Another good place to start would be incorporating

some form of Wickens Salience Effort Expectancy Value (SEEV) or N-SEEV models

[36] [37].

 The physical capabilities of the SoarEye model could be enhanced as well. The

SoarEye head/eye movement at the time of this writing is attached to a stationary torso

that does not move. Developing a more accurate physical model of the pilot could

enhance the realism for reaction times for both motor movements and perception of the

environment by the cognitive model. While the differences would result in changes to

www.manaraa.com

71

individual actions on the order of milliseconds, over simulation runs that last hours, this

could be a significant development in accuracy of the model.

 Finally, it would be of interest to be able to implement tools into SoarEye that can

quiz the metrics in the Soar agent itself to estimate the workload of the pilot. The

SoarEye model helps determine the mental representation airline pilots have for flight-

deck information. This is the initial step for developing cognitive measures of crew

performance. There are a number of metrics in Soar that could potentially be correlated to

how much effort the model is required to use to complete tasks the cockpit. How often

memory is accessed, monitoring the reinforcement learning values being assigned to

production rules specific to certain tasks, and how long individual inputs are

ignored/neglected due to the model focusing on other tasks. Using data collected from

simulator studies with human pilots, numerical weights could be assigned to the cognitive

model metrics to achieve comparable workload ratings such as one would find with

NASA-TLX and/or Bedford workload scores.

www.manaraa.com

72

APPENDIX A: SMARTEYE PACKET DATA AND FORMAT

Figure A.1: Packet structure/format of the eye metric packets

www.manaraa.com

73

Table A.1: Data Types

Data Type Consists of Type Alias

u8 Unsigned integer 1 byte Type_u8

u16 Unsigned integer 2 bytes Type_u16

u32 Unsigned integer 4 bytes Type_u32

s32 Signed integer 4 bytes Type_s32

u64 Unsigned integer 8 bytes Type_u64

f64 Floating point 8 bytes Type_f64

Point2D f64 x

f64 y

Type_Point2D

Vect2D f64 x

f64 y

Type_Vect2D

Point3D f64 x

f64 y

f64 z

Type_Point3D

Vect3D f64 x

f64 y

f64 z

Type_Vect3D

String u16 size

u8 ptr[1024]

Type_String

WorldIntersectionStruct Point3D worldPoint

Point3D objectPoint

String objectName

WorldIntersection u16 size = 0..1

WorldIntersectionStruct

Type_WorldIntersection

WorldIntersections u16 size = 0..1

WorldIntersectionStruct

Type_WorldIntersection

Vector u16 size = 0..1

N items of any Type

Each Type is prefixed with

u16 SubPacket ID

Type_Vector

www.manaraa.com

74

Table A.2: SubPacket IDs

Enum ID Enum

number

Data type

SEFrameNumber 0001 Type_u32

SEHeadPosition 0010 Type_Point3D

SEHeadPositionQ 0011 Type_f64

SEHeadNoseDirection 0013 Type_Vect3D

SEHeadUpDirection 0014 Type_Vect3D

SEHeadLeftEarDirection 0015 Type_Vect3D

SEFilteredGazeHeading 0036 Type_f64

SEFilteredGazePitch 0037 Type_f64

SEHeadRoll 0018 Type_f64

SELeftGazeOrigin 001B Type_Point3D

SERightGazeOrigin 001C Type_Point3D

SELeftGazeDirectionQ 0025 Type_f64

SERightGazeDirectionQ 0028 Type_f64

SEFilteredLeftGazeDirection 0032 Type_Vect3D

SEFilteredRightGazeDirection 0034 Type_Vect3D

SEEyelidOpening 0050 Type_f64

SEEyelidOpeningQ 0051 Type_f64

SEClosestWorldIntersection 0040 Type_WorldIntersection

www.manaraa.com

75

Table A.3: SubPacket item descriptions

Data Item Unit Description

Frame number - A sequential frame number. The frame

number starts counting from 0 at application

start and increments by 1 for each

successfully built data packet.

Head Position m The head position in 3D given in the

defined world coordinate system

Head Position Quality 0..1 (0 = no tracking, 1 = full tracking)

Head Nose Direction Unit vector defining the ‘nose’ direction.

Identical to the z-axis of the head rotation

matrix.

Head Up Direction Unit vector defining the ‘up’ direction.

Identical to the y-axis of the head rotation

matrix.

Head Left Ear

Direction

 Unit vector defining the ‘left ear’ direction.

Identical to the x-axis of the head rotation

matrix.

Filtered Gaze

Heading

rad The left/right angle of the gaze vector.

Filtered Gaze Pitch rad The up/down angle of the gaze vector.

Head Roll rad The tilt-rotation of the head. Also known as

‘maybe’ rotation.

Left Gaze Origin m The center of the iris of the left eye, where

the gaze vector originates.

Right Gaze Origin m The center of the iris of the right eye, where

the gaze vector originates.

Left Gaze Direction

Quality

 0..1. Depends on the quality of the iris

detection of the left eye

Right Gaze Direction

Quality

 0..1 Depends on the quality of the iris

detection of the right eye

Filtered Left Gaze

Direction

 A unit vector originating in the left gaze

origin, describing the direction of the gaze

of the left eye (filtered).

Filtered Right Gaze

Direction

 A unit vector originating in the right gaze

origin, describing the direction of the gaze

of the right eye (filtered).

Eyelid Opening m The average distance between the eyelids of

both eyes

Eyelid Opening

Quality

 Normally in the range 0..1. Calculates as the

average quality of the both physical eyes.

Closest World

Intersection

 The closest intersection with any of the

world objects. The intersection information

contains name of the object, intersection

www.manaraa.com

76

Table A.3 - continued

 point in world coordinates and intersection point

in object coordinates.

Each sub packet of this type starts with an

integer indicating the number of world

intersections contained in the sub packet. If there

are no gaze intersections with world objects for

the current frame, this integer will be 0,

otherwise 1.

www.manaraa.com

77

APPENDIX B: 737 COCKPIT DEFINITION FILE

<?xml version="1.0" encoding="utf-8"?>

<ArrayOfRoi xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <Roi>

 <Name>PFD_Attitude_Indicator</Name>

 <X>50</X>

 <Y>200</Y>

 <Xm>0.125</Xm>

 <Ym>-0.333</Ym>

 <Zm>0.981</Zm>

 <DecayTO>.005</DecayTO>

 <DecayTOType>Linear</DecayTOType>

 <DecayCRZ>.001</DecayCRZ>

 <DecayCRZType>Linear</DecayCRZType>

 <DecayAPP>.005</DecayAPP>

 <DecayAPPType>Linear</DecayAPPType>

 </Roi>

 <Roi>

 <Name>PFD_Heading_Indicator</Name>

 <X>31</X>

 <Y>220</Y>

 <Xm>.148</Xm>

 <Ym>-.417</Ym>

 <Zm>0.981</Zm>

 <DecayTO>.005</DecayTO>

 <DecayTOType>Linear</DecayTOType>

 <DecayCRZ>.001</DecayCRZ>

 <DecayCRZType>Linear</DecayCRZType>

 <DecayAPP>.005</DecayAPP>

 <DecayAPPType>Linear</DecayAPPType>

 </Roi>

 <Roi>

 <Name>PFD_Current_Airspeed</Name>

 <X>20</X>

 <Y>198</Y>

 <Xm>0.172</Xm>

 <Ym>-0.333</Ym>

 <Zm>0.981</Zm>

 <DecayTO>.005</DecayTO>

 <DecayTOType>Linear</DecayTOType>

 <DecayCRZ>.001</DecayCRZ>

 <DecayCRZType>Linear</DecayCRZType>

www.manaraa.com

78

 <DecayAPP>.005</DecayAPP>

 <DecayAPPType>Linear</DecayAPPType>

 </Roi>

 <Roi>

 <Name>PFD_Current_Altitude</Name>

 <X>81</X>

 <Y>203</Y>

 <Xm>0.075</Xm>

 <Ym>-0.333</Ym>

 <Zm>0.981</Zm>

 <DecayTO>.005</DecayTO>

 <DecayTOType>Linear</DecayTOType>

 <DecayCRZ>.001</DecayCRZ>

 <DecayCRZType>Linear</DecayCRZType>

 <DecayAPP>.005</DecayAPP>

 <DecayAPPType>Linear</DecayAPPType>

 </Roi>

 <Roi>

 <Name>PFD_Capt_FMA</Name>

 <X>49</X>

 <Y>181</Y>

 <Xm>0.125</Xm>

 <Ym>-0.261</Ym>

 <Zm>0.981</Zm>

 <DecayTO>.005</DecayTO>

 <DecayTOType>Linear</DecayTOType>

 <DecayCRZ>.001</DecayCRZ>

 <DecayCRZType>Linear</DecayCRZType>

 <DecayAPP>.005</DecayAPP>

 <DecayAPPType>Linear</DecayAPPType>

 </Roi>

 <Roi>

 <Name>PFD_Speed_Bug_Setting_Indicator</Name>

 <X>23</X>

 <Y>185</Y>

 <Xm>0.172</Xm>

 <Ym>-0.285</Ym>

 <Zm>0.981</Zm>

 <DecayTO>.005</DecayTO>

 <DecayTOType>Linear</DecayTOType>

 <DecayCRZ>.001</DecayCRZ>

 <DecayCRZType>Linear</DecayCRZType>

 <DecayAPP>.005</DecayAPP>

 <DecayAPPType>Linear</DecayAPPType>

www.manaraa.com

79

 </Roi>

 <Roi>

 <Name>PFD_Altitude_Bug_Setting_Indicator</Name>

 <X>84</X>

 <Y>182</Y>

 <Xm>0.075</Xm>

 <Ym>-0.285</Ym>

 <Zm>0.981</Zm>

 <DecayTO>.005</DecayTO>

 <DecayTOType>Linear</DecayTOType>

 <DecayCRZ>.001</DecayCRZ>

 <DecayCRZType>Linear</DecayCRZType>

 <DecayAPP>.005</DecayAPP>

 <DecayAPPType>Linear</DecayAPPType>

 </Roi>

 <Roi>

 <Name>PFD_Vertical_Speed_Indicator</Name>

 <X>92</X>

 <Y>203</Y>

 <Xm>.056</Xm>

 <Ym>-0.33</Ym>

 <Zm>0.981</Zm>

 <DecayTO>.005</DecayTO>

 <DecayTOType>Linear</DecayTOType>

 <DecayCRZ>.001</DecayCRZ>

 <DecayCRZType>Linear</DecayCRZType>

 <DecayAPP>.005</DecayAPP>

 <DecayAPPType>Linear</DecayAPPType>

 </Roi>

 <Roi>

 <Name>MCP_Set_Course</Name>

 <X>203</X>

 <Y>124</Y>

 <Xm>-0.305</Xm>

 <Ym>-0.08</Ym>

 <Zm>0.734</Zm>

 <DecayTO>.005</DecayTO>

 <DecayTOType>Linear</DecayTOType>

 <DecayCRZ>.001</DecayCRZ>

 <DecayCRZType>Linear</DecayCRZType>

 <DecayAPP>.005</DecayAPP>

 <DecayAPPType>Linear</DecayAPPType>

 </Roi>

 <Roi>

www.manaraa.com

80

 <Name>MCP_AT_Arm</Name>

 <X>212</X>

 <Y>123</Y>

 <Xm>-0.34</Xm>

 <Ym>-0.09</Ym>

 <Zm>0.734</Zm>

 <DecayTO>.005</DecayTO>

 <DecayTOType>Linear</DecayTOType>

 <DecayCRZ>.001</DecayCRZ>

 <DecayCRZType>Linear</DecayCRZType>

 <DecayAPP>.005</DecayAPP>

 <DecayAPPType>Linear</DecayAPPType>

 </Roi>

 <Roi>

 <Name>MCP_Set_Speed</Name>

 <X>228</X>

 <Y>117</Y>

 <Xm>-0.385</Xm>

 <Ym>-0.08</Ym>

 <Zm>0.734</Zm>

 <DecayTO>.005</DecayTO>

 <DecayTOType>Linear</DecayTOType>

 <DecayCRZ>.001</DecayCRZ>

 <DecayCRZType>Linear</DecayCRZType>

 <DecayAPP>.005</DecayAPP>

 <DecayAPPType>Linear</DecayAPPType>

 </Roi>

 <Roi>

 <Name>MCP_Speed_Knob</Name>

 <X>233</X>

 <Y>130</Y>

 <Xm>-0.395</Xm>

 <Ym>-0.117</Ym>

 <Zm>0.734</Zm>

 <DecayTO>.005</DecayTO>

 <DecayTOType>Linear</DecayTOType>

 <DecayCRZ>.001</DecayCRZ>

 <DecayCRZType>Linear</DecayCRZType>

 <DecayAPP>.005</DecayAPP>

 <DecayAPPType>Linear</DecayAPPType>

 </Roi>

 <Roi>

 <Name>MCP_VNAV_Engage</Name>

 <X>242</X>

www.manaraa.com

81

 <Y>117</Y>

 <Xm>-0.425</Xm>

 <Ym>-0.087</Ym>

 <Zm>0.734</Zm>

 <DecayTO>.005</DecayTO>

 <DecayTOType>Linear</DecayTOType>

 <DecayCRZ>.001</DecayCRZ>

 <DecayCRZType>Linear</DecayCRZType>

 <DecayAPP>.005</DecayAPP>

 <DecayAPPType>Linear</DecayAPPType>

 </Roi>

 <Roi>

 <Name>MCP_Heading_Knob</Name>

 <X>250</X>

 <Y>130</Y>

 <Xm>-0.455</Xm>

 <Ym>-0.08</Ym>

 <Zm>0.734</Zm>

 <DecayTO>.005</DecayTO>

 <DecayTOType>Linear</DecayTOType>

 <DecayCRZ>.001</DecayCRZ>

 <DecayCRZType>Linear</DecayCRZType>

 <DecayAPP>.005</DecayAPP>

 <DecayAPPType>Linear</DecayAPPType>

 </Roi>

 <Roi>

 <Name>MCP_Set_Heading</Name>

 <X>253</X>

 <Y>117</Y>

 <Xm>-0.455</Xm>

 <Ym>-0.08</Ym>

 <Zm>0.734</Zm>

 <DecayTO>.005</DecayTO>

 <DecayTOType>Linear</DecayTOType>

 <DecayCRZ>.001</DecayCRZ>

 <DecayCRZType>Linear</DecayCRZType>

 <DecayAPP>.005</DecayAPP>

 <DecayAPPType>Linear</DecayAPPType>

 </Roi>

 <Roi>

 <Name>MCP_LNAV_Engage</Name>

 <X>264</X>

 <Y>118</Y>

 <Xm>-0.495</Xm>

www.manaraa.com

82

 <Ym>-0.087</Ym>

 <Zm>0.734</Zm>

 <DecayTO>.005</DecayTO>

 <DecayTOType>Linear</DecayTOType>

 <DecayCRZ>.001</DecayCRZ>

 <DecayCRZType>Linear</DecayCRZType>

 <DecayAPP>.005</DecayAPP>

 <DecayAPPType>Linear</DecayAPPType>

 </Roi>

 <Roi>

 <Name>MCP_Set_Altitude</Name>

 <X>278</X>

 <Y>120</Y>

 <Xm>-0.539</Xm>

 <Ym>-0.08</Ym>

 <Zm>0.734</Zm>

 <DecayTO>.005</DecayTO>

 <DecayTOType>Linear</DecayTOType>

 <DecayCRZ>.001</DecayCRZ>

 <DecayCRZType>Linear</DecayCRZType>

 <DecayAPP>.005</DecayAPP>

 <DecayAPPType>Linear</DecayAPPType>

 </Roi>

 <Roi>

 <Name>MCP_Set_Vertical_Speed</Name>

 <X>295</X>

 <Y>121</Y>

 <Xm>-0.595</Xm>

 <Ym>-0.08</Ym>

 <Zm>0.734</Zm>

 <DecayTO>.005</DecayTO>

 <DecayTOType>Linear</DecayTOType>

 <DecayCRZ>.001</DecayCRZ>

 <DecayCRZType>Linear</DecayCRZType>

 <DecayAPP>.005</DecayAPP>

 <DecayAPPType>Linear</DecayAPPType>

 </Roi>

 <Roi>

 <Name>MCP_CMD_Engage_A</Name>

 <X>307</X>

 <Y>122</Y>

 <Xm>-0.644</Xm>

 <Ym>-0.091</Ym>

 <Zm>0.734</Zm>

www.manaraa.com

83

 <DecayTO>.005</DecayTO>

 <DecayTOType>Linear</DecayTOType>

 <DecayCRZ>.001</DecayCRZ>

 <DecayCRZType>Linear</DecayCRZType>

 <DecayAPP>.005</DecayAPP>

 <DecayAPPType>Linear</DecayAPPType>

 </Roi>

 <Roi>

 <Name>MCP_CMD_Engage_B</Name>

 <X>314</X>

 <Y>124</Y>

 <Xm>-0.671</Xm>

 <Ym>-0.091</Ym>

 <Zm>0.734</Zm>

 <DecayTO>.005</DecayTO>

 <DecayTOType>Linear</DecayTOType>

 <DecayCRZ>.001</DecayCRZ>

 <DecayCRZType>Linear</DecayCRZType>

 <DecayAPP>.005</DecayAPP>

 <DecayAPPType>Linear</DecayAPPType>

 </Roi>

 <Roi>

 <Name>MCP_CMD_Disengage</Name>

 <X>312</X>

 <Y>140</Y>

 <Xm>-0.656</Xm>

 <Ym>-0.143</Ym>

 <Zm>0.734</Zm>

 <DecayTO>.005</DecayTO>

 <DecayTOType>Linear</DecayTOType>

 <DecayCRZ>.001</DecayCRZ>

 <DecayCRZType>Linear</DecayCRZType>

 <DecayAPP>.005</DecayAPP>

 <DecayAPPType>Linear</DecayAPPType>

 </Roi>

 <Roi>

 <Name>MCP_VS_Wheel</Name>

 <X>299</X>

 <Y>132</Y>

 <Xm>-0.511</Xm>

 <Ym>-0.129</Ym>

 <Zm>0.734</Zm>

 <DecayTO>.005</DecayTO>

 <DecayTOType>Linear</DecayTOType>

www.manaraa.com

84

 <DecayCRZ>.001</DecayCRZ>

 <DecayCRZType>Linear</DecayCRZType>

 <DecayAPP>.005</DecayAPP>

 <DecayAPPType>Linear</DecayAPPType>

 </Roi>

 <Roi>

 <Name>MCP_Vertical_Speed_Engage</Name>

 <X>284</X>

 <Y>135</Y>

 <Xm>-0.558</Xm>

 <Ym>-0.134</Ym>

 <Zm>0.734</Zm>

 <DecayTO>.005</DecayTO>

 <DecayTOType>Linear</DecayTOType>

 <DecayCRZ>.001</DecayCRZ>

 <DecayCRZType>Linear</DecayCRZType>

 <DecayAPP>.005</DecayAPP>

 <DecayAPPType>Linear</DecayAPPType>

 </Roi>

 <Roi>

 <Name>MCP_Altitude_Knob</Name>

 <X>285</X>

 <Y>138</Y>

 <Xm>-0.539</Xm>

 <Ym>-0.113</Ym>

 <Zm>0.734</Zm>

 <DecayTO>.005</DecayTO>

 <DecayTOType>Linear</DecayTOType>

 <DecayCRZ>.001</DecayCRZ>

 <DecayCRZType>Linear</DecayCRZType>

 <DecayAPP>.005</DecayAPP>

 <DecayAPPType>Linear</DecayAPPType>

 </Roi>

 <Roi>

 <Name>MCP_Altitude_Hold_Engage</Name>

 <X>276</X>

 <Y>136</Y>

 <Xm>-0.539</Xm>

 <Ym>-0.134</Ym>

 <Zm>0.734</Zm>

 <DecayTO>.005</DecayTO>

 <DecayTOType>Linear</DecayTOType>

 <DecayCRZ>.001</DecayCRZ>

 <DecayCRZType>Linear</DecayCRZType>

www.manaraa.com

85

 <DecayAPP>.005</DecayAPP>

 <DecayAPPType>Linear</DecayAPPType>

 </Roi>

 <Roi>

 <Name>MCP_APP_Mode_Engage</Name>

 <X>263</X>

 <Y>135</Y>

 <Xm>-0.495</Xm>

 <Ym>-0.134</Ym>

 <Zm>0.734</Zm>

 <DecayTO>.005</DecayTO>

 <DecayTOType>Linear</DecayTOType>

 <DecayCRZ>.001</DecayCRZ>

 <DecayCRZType>Linear</DecayCRZType>

 <DecayAPP>.005</DecayAPP>

 <DecayAPPType>Linear</DecayAPPType>

 </Roi>

 <Roi>

 <Name>MCP_Heading_Select_Engage</Name>

 <X>254</X>

 <Y>135</Y>

 <Xm>-0.455</Xm>

 <Ym>-0.134</Ym>

 <Zm>0.734</Zm>

 <DecayTO>.005</DecayTO>

 <DecayTOType>Linear</DecayTOType>

 <DecayCRZ>.001</DecayCRZ>

 <DecayCRZType>Linear</DecayCRZType>

 <DecayAPP>.005</DecayAPP>

 <DecayAPPType>Linear</DecayAPPType>

 </Roi>

 <Roi>

 <Name>MCP_Speed_Controlled_Level_Change_Engage</Name>

 <X>244</X>

 <Y>135</Y>

 <Xm>-0.425</Xm>

 <Ym>-0.134</Ym>

 <Zm>0.734</Zm>

 <DecayTO>.005</DecayTO>

 <DecayTOType>Linear</DecayTOType>

 <DecayCRZ>.001</DecayCRZ>

 <DecayCRZType>Linear</DecayCRZType>

 <DecayAPP>.005</DecayAPP>

 <DecayAPPType>Linear</DecayAPPType>

www.manaraa.com

86

 </Roi>

 <Roi>

 <Name>MCP_Speed_Set_Engage</Name>

 <X>220</X>

 <Y>133</Y>

 <Xm>-0.363</Xm>

 <Ym>-0.134</Ym>

 <Zm>0.734</Zm>

 <DecayTO>.005</DecayTO>

 <DecayTOType>Linear</DecayTOType>

 <DecayCRZ>.001</DecayCRZ>

 <DecayCRZType>Linear</DecayCRZType>

 <DecayAPP>.005</DecayAPP>

 <DecayAPPType>Linear</DecayAPPType>

 </Roi>

 <Roi>

 <Name>MCP_N1_Engage</Name>

 <X>212</X>

 <Y>135</Y>

 <Xm>-0.34</Xm>

 <Ym>-0.134</Ym>

 <Zm>0.734</Zm>

 <DecayTO>.005</DecayTO>

 <DecayTOType>Linear</DecayTOType>

 <DecayCRZ>.001</DecayCRZ>

 <DecayCRZType>Linear</DecayCRZType>

 <DecayAPP>.005</DecayAPP>

 <DecayAPPType>Linear</DecayAPPType>

 </Roi>

 <Roi>

 <Name>MCP_Flight_Director_On_Off</Name>

 <X>205</X>

 <Y>135</Y>

 <Xm>-0.323</Xm>

 <Ym>-0.134</Ym>

 <Zm>0.734</Zm>

 <DecayTO>.005</DecayTO>

 <DecayTOType>Linear</DecayTOType>

 <DecayCRZ>.001</DecayCRZ>

 <DecayCRZType>Linear</DecayCRZType>

 <DecayAPP>.005</DecayAPP>

 <DecayAPPType>Linear</DecayAPPType>

 </Roi>

 <Roi>

www.manaraa.com

87

 <Name>Capt_Nav</Name>

 <X>150</X>

 <Y>200</Y>

 <Xm>-0.297</Xm>

 <Ym>-0.333</Ym>

 <Zm>0.923</Zm>

 <DecayTO>.005</DecayTO>

 <DecayTOType>Linear</DecayTOType>

 <DecayCRZ>.001</DecayCRZ>

 <DecayCRZType>Linear</DecayCRZType>

 <DecayAPP>.005</DecayAPP>

 <DecayAPPType>Linear</DecayAPPType>

 </Roi>

 <Roi>

 <Name>Lower_EICAS</Name>

 <X>240</X>

 <Y>260</Y>

 <Xm>-0.56</Xm>

 <Ym>-0.585</Ym>

 <Zm>0.82</Zm>

 <DecayTO>.005</DecayTO>

 <DecayTOType>Linear</DecayTOType>

 <DecayCRZ>.001</DecayCRZ>

 <DecayCRZType>Linear</DecayCRZType>

 <DecayAPP>.005</DecayAPP>

 <DecayAPPType>Linear</DecayAPPType>

 </Roi>

 <Roi>

 <Name>EICAS</Name>

 <X>280</X>

 <Y>200</Y>

 <Xm>-0.671</Xm>

 <Ym>-0.262</Ym>

 <Zm>0.981</Zm>

 <DecayTO>.005</DecayTO>

 <DecayTOType>Linear</DecayTOType>

 <DecayCRZ>.001</DecayCRZ>

 <DecayCRZType>Linear</DecayCRZType>

 <DecayAPP>.005</DecayAPP>

 <DecayAPPType>Linear</DecayAPPType>

 </Roi>

 <Roi>

 <Name>OSV_Ahead</Name>

 <X>50</X>

www.manaraa.com

88

 <Y>80</Y>

 <Xm>0.00</Xm>

 <Ym>0.10</Ym>

 <Zm>1.0</Zm>

 <DecayTO>.005</DecayTO>

 <DecayTOType>Linear</DecayTOType>

 <DecayCRZ>.001</DecayCRZ>

 <DecayCRZType>Linear</DecayCRZType>

 <DecayAPP>.005</DecayAPP>

 <DecayAPPType>Linear</DecayAPPType>

 </Roi>

 <Roi>

 <Name>Landing_Gear</Name>

 <X>220</X>

 <Y>200</Y>

 <Xm>-0.59</Xm>

 <Ym>-0.262</Ym>

 <Zm>0.858</Zm>

 <DecayTO>.005</DecayTO>

 <DecayTOType>Linear</DecayTOType>

 <DecayCRZ>.001</DecayCRZ>

 <DecayCRZType>Linear</DecayCRZType>

 <DecayAPP>.005</DecayAPP>

 <DecayAPPType>Linear</DecayAPPType>

 </Roi>

 <Roi>

 <Name>Overhead_Panel</Name>

 <X>280</X>

 <Y>20</Y>

 <Xm>-0.505</Xm>

 <Ym>0.389</Ym>

 <Zm>0.249</Zm>

 <DecayTO>.005</DecayTO>

 <DecayTOType>Linear</DecayTOType>

 <DecayCRZ>.001</DecayCRZ>

 <DecayCRZType>Linear</DecayCRZType>

 <DecayAPP>.005</DecayAPP>

 <DecayAPPType>Linear</DecayAPPType>

 </Roi>

 <Roi>

 <Name>Capt_CDU</Name>

 <X>180</X>

 <Y>270</Y>

 <Xm>-0.367</Xm>

www.manaraa.com

89

 <Ym>-0.531</Ym>

 <Zm>0.82</Zm>

 <DecayTO>.005</DecayTO>

 <DecayTOType>Linear</DecayTOType>

 <DecayCRZ>.001</DecayCRZ>

 <DecayCRZType>Linear</DecayCRZType>

 <DecayAPP>.005</DecayAPP>

 <DecayAPPType>Linear</DecayAPPType>

 </Roi>

</ArrayOfRoi>

www.manaraa.com

90

REFERENCES

1. Card, S.K., T.P. Moran, and A. Newell, The Psychology of Human-Computer

Interaction. 1983: Taylor & Francis.

2. Laird, J., The Soar Cognitive Architecture. 2012: MIT Press.

3. J. K. Jacob, R. and K. Karn, Eye Tracking in Human-Computer Interaction and

Usability Research: Ready to Deliver the Promises. Vol. 2. 2003. 573-605.

4. Fitts, P.M.J., Richard E. ; Milton, John L., Eye Fixations of Aircraft Pilots. III.

Frequency, Duration, and Sequence Fixations When Flying Air Force Ground-

Controlled Approach System (GCA). AIR MATERIEL COMMAND WRIGHT-

PATTERSON AFB OH, 1949: p. 25.

5. Newell, A., Unified Theories of Cognition. 1994: Harvard University Press.

6. Taatgen, N. and J.R. Anderson, The Past, Present, and Future of Cognitive

Architectures. Topics in Cognitive Science, 2010. 2(4): p. 693-704.

7. Jilk, D.J., et al., SAL: An explicitly pluralistic cognitive architecture. Journal of

Experimental and Theoretical Artificial Intelligence, 2008. 20(3): p. 197-218.

8. O’Reilly, R.C., T.E. Hazy, and S.A. Herd, The Leabra Cognitive Architecture:

How to Play 20 Principles with Nature. The Oxford handbook of cognitive

science, 2016: p. 91.

9. Eliasmith, C., et al., A large-scale model of the functioning brain. science, 2012.

338(6111): p. 1202-1205.

10. Anderson, J.R., ACT: A simple theory of complex cognition. American

Psychologist, 1996. 51(4): p. 355.

11. Anderson, J.R., The Architecture of Cognition. 1996: Lawrence Erlbaum.

12. Kieras, D.E. and D.E. Meyer, An overview of the EPIC architecture for cognition

and performance with application to human-computer interaction. Human–

Computer Interaction, 1997. 12(4): p. 391-438.

13. Sun, R., The CLARION cognitive architecture: Extending cognitive modeling to

social simulation. Cognition and multi-agent interaction, 2006: p. 79-99.

14. Franklin, S. and F. Patterson Jr, The LIDA architecture: Adding new modes of

learning to an intelligent, autonomous, software agent. pat, 2006. 703: p. 764-

1004.

15. Gobet, F., et al., Chunking mechanisms in human learning. Trends in cognitive

sciences, 2001. 5(6): p. 236-243.

16. Just, M.A., P.A. Carpenter, and S. Varma, Computational modeling of high‐level

cognition and brain function. Human brain mapping, 1999. 8(2‐3): p. 128-136.

17. Wray, R.E. and R.S. Chong, Comparing Cognitive Models and Human Behavior

Models: Two Computational Tools for Expressing Human Behavior. Journal of

Aerospace Computing, Information, and Communication, 2007. 4(5): p. 836-852.

18. Lim, M.Y., Memory Models for Intelligent Social Companions, in Human-

Computer Interaction: The Agency Perspective, M. Zacarias and J.V. de Oliveira,

Editors. 2012, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 241-262.

19. Rosenbloom, P.S., The Sigma cognitive architecture and system. AISB Quarterly,

2013. 136: p. 4-13.

www.manaraa.com

91

20. Rosenbloom, P.S., A. Demski, and V. Ustun, The Sigma cognitive architecture

and system: Towards functionally elegant grand unification. Journal of Artificial

General Intelligence, 2016. 7(1): p. 1-103.

21. Watson, P.D., et al., A COMPUTATIONAL MODEL OF RELATIONAL

MEMORY BINDING IN THE HIPPOCAMPUS. MECHANISMS OF

HIPPOCAMPAL RELATIONAL BINDING. 1001: p. 157.

22. Goertzel, B., CogPrime: An Inegrative Architecture for Embodied Artificial

General Intelligence. 2012.

23. John, B.E. and D.D. Salvucci, Multipurpose prototypes for assessing user

interfaces in pervasive computing systems. Pervasive Computing, IEEE, 2005.

4(4): p. 27-34.

24. John, B.E. CogTool Website. 2014 [cited 2014 June 17, 2014]; Available from:

https://cogtool.wordpress.com/.

25. Byrne, M.D.a.K., A, Integrated Modeling of Cognition and the Information

Environment: A Closed-Loop, ACT-R Approach to Modeling Approach and

Landing With and Without Synthetic Vision System (SVS) Technology.

Proceedings of the 2003 Conference on Human Performance Modeling of

Approach and Landing with Augmented Displays, 2003: p. 27.

26. Long, L.N., S.D. Hanford, and O. Janrathitikarn. Cognitive robotics using vision

and mapping systems with Soar. 2010.

27. Jones, R.M., Laird, J.E., Nielsen, P.E., Coulter, K.J., Kenny, P., & Koss, F.V.,

Automated Intelligent Pilots for Combat Flight Simulation. AI Magazine, 1999.

20(1): p. 27-41.

28. Forgy, C.L., On the Efficient Implementation of Production Systems, in

Department of Computer Science. 1979, Carnegie-Mellon University.

29. Balbo, S., Ozkan, N., Paris, C., Choosing the right task-modeling notation: a

taxonomy, in The Handbook of Task Analysis for Human-Computer Interaction,

S. Dan Diaper, N.A., Editor. 2004, Lawrence Erlbaum Associates. p. 445-466.

30. Newell, A. and H.A. Simon, Human problem solving. 1972: Prentice-Hall.

31. Laird, J.E., The Soar 9 Tutorial. 2014, University of Michigan: University of

Michigan.

32. Zelinsky, G.J., et al., Eye Movements Reveal the Spatiotemporal Dynamics of

Visual Search. Psychological Science, 1997. 8(6): p. 448-453.

33. Fitts, P.M., The information capacity of the human motor system in controlling

the amplitude of movement. Journal of Experimental Psychology, 1954. 47(6): p.

381-391.

34. Kondraske, G.V. An angular motion Fitt's Law for human performance modeling

and prediction. in Proceedings of 16th Annual International Conference of the

IEEE Engineering in Medicine and Biology Society. 1994.

35. Hillstrom, A.P. and S. Yantis, Visual motion and attentional capture. Perception

& Psychophysics, 1994. 55(4): p. 399-411.

36. Wickens, C.D., et al., Attentional models of multitask pilot performance using

advanced display technology. Hum Factors, 2003. 45(3): p. 360-80.

37. Steelman-Allen, K.S., et al., N-SEEV: A Computational Model of Attention and

Noticing. Proceedings of the Human Factors and Ergonomics Society Annual

Meeting, 2009. 53(12): p. 774-778.

https://cogtool.wordpress.com/

	Cognitive-model-driven pilot attention for commercial airline scenarios
	Recommended Citation

	tmp.1551472566.pdf.Q5R0h

