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ABSTRACT 

Bringing airline pilots to remote locations for evaluation of new 

software/hardware tools and procedures is an expensive process in terms of both money 

and time. Estimating the design and outcome of a study to evaluate these new tools can 

be tricky as there are many new variables for which there is little to no data. However, 

sometimes even after careful vetting of scenarios in the simulator prior to bringing 

subject-matter experts into the simulation facility, few to no metrics of statistical 

significance can be found. While it may be valid that there are no metrics of statistical 

significance, it is perhaps a missed opportunity to take advantage of the precious time and 

resources of having a subject-matter expert at the research facility. 

The research presented in this paper has developed a software tool for simulating 

a pilot’s visual perception of working in various configurations of cockpits. This may 

provide researchers insight into what types of scenarios and tactics would be of interest to 

use with real subject-matter experts. In other words, this should help identify the best use 

of resources to take advantage of having pilots at the facility and avoid 

scenarios/procedures that don’t generate data of interest. 

Another useful possibility with this tool is identifying cockpits that may be 

inefficiently designed. Instruments that should be grouped together can be easily 

identified by analyzing the eye-scan pattern of the model with different cockpit-

configuration files. The results that this new software-evaluation tool provides have 

implications for several different evaluations beyond estimating pilot reactions.  
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PUBLIC ABSTRACT 

Bringing airline pilots to remote locations for evaluation of new 

software/hardware tools and procedures is an expensive process in terms of both money 

and time. Designing scenarios to evaluate these new tools can be tricky as there are many 

new variables for which there is little to no data. However, sometimes even after careful 

vetting of scenarios in the simulator prior to bringing airline pilots into the simulation 

facility, few to no points of data that illustrate something interesting can be found. If 

nothing else, it is perhaps a missed opportunity to take advantage of the precious time and 

resources of having a pilot at the research facility. 

The research presented in this paper has developed a software tool for simulating 

a pilot’s visual perception in various types of aircraft. This should help researchers 

identify the best use of their time to take advantage of having pilots at the facility and 

avoid scenarios/procedures that could be a waste of time. Another useful possibility with 

this tool is identifying cockpits that may be inefficiently designed. The results that this 

new software-evaluation tool provides have implications for several different evaluations. 
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CHAPTER 1: INTRODUCTION 

Statement of the Problem 

Pilots can only make decisions and act on the information that is available to them 

from inside and outside the cockpit. Understanding how pilots acquire and prioritize 

information while conducting operations in aircraft is critical for addressing data gaps 

that might be formed in a pilot’s mind. 

This dissertation seeks to increase the understanding of how pilots acquire 

information using an approach that hasn’t been used before. Fusing the Soar cognitive-

modeling software with a complex aircraft environment in X-Plane, a tool for 

investigating such queries has been created to help answer these questions outside of a 

human-in-the-loop environment. 

Cognitive modeling is a field that has evolved over the last several decades, 

starting with serious attempts by Card, Moran, Newell in the 1950s [1] to develop a 

model that would satisfy behavior prediction of humans. 

Research in aviation safety often involves conducting studies wherein airline 

pilots are brought into a simulator environment to evaluate new procedures and 

displays/notifications and to give feedback on what is useful and what is not useful from 

the pilot’s perspective. It is an expensive endeavor to bring airline pilots into a simulator 

facility as well as to staff the simulator for the duration of the study. It is important to 

maximize the product of the study for the time and resources put into it. In order to 

minimize waste while conducting such a study, elements of the proposed study could be 

screened for effectiveness, and some great cost savings could be realized. One method for 
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screening the design of the study would be to evaluate the scenarios in the simulation 

with an artificial airline pilot controlled by a cognitive model. 

A cognitive model for an airline pilot would support decision making and 

interaction with a dynamic environment, in this case a commercial airline cockpit. This 

would allow researchers to identify scenarios that are of interest before actual airline 

pilots visit a simulation facility to participate in a study. 

Background 

There are a few different levels/layers of modeling a human in software: the 

physical layer, the cognitive layer, and the knowledge layer. The cognitive architecture 

layer exists at the interface between the physical layer and the cognitive layer. One of the 

goals of cognitive modeling is creating a model of human behavior that closely matches 

behavioral data such as error rates and reaction times. 

Several models of human behavior have been developed and have evolved over 

the last half century. Psychology-based models are designed to emulate the architecture 

of human cognitive patterns to help decode stages of perception from knowledge retrieval 

through decision evaluation to motor action execution. 

Each style of cognitive model that has been developed takes different feature and 

implementation approaches based on the researcher’s goals for the use of the model. 

However, most of these models have many common elements that allow other 

researchers to focus on the tasks they are interested in rather than thinking about the 

lower-level programming details needed to implement the cognitive capabilities from 

scratch. The breadth of models developed and their applications will be explored in 

Chapter 2. 
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Objectives 

The objective of this dissertation research is the development and verification of a 

cognitive model of a commercial airline pilot. Using X-Plane as the simulator 

environment, the pilot model will be exposed to different types of scenarios and the data 

collected from the model will be compared against data collected from human pilot 

participants in previous studies. After the comparison of the data sets between the 

cognitive model and actual human participants, an evaluation of future use of the 

cognitive model will be performed and elaborated upon. 

Influences on Architecture Design 

There are three primary components that influence the design of the cognitive 

architecture: environment, tasks, and agent structure. For this research topic and scope, 

the environment will be confined to the cockpit of a Boeing 737-800 simulator with the 

notion that this could be expanded to many different types of simulated cockpits in the 

future. The tasks for this project will be kept to standard in-flight procedures such as 

small changes in altitude and heading, but as with the environment, the tasks could be 

expanded upon in the future. The agent structure will be covered extensively in Chapters 

3 and 4 of this research, but the key components are that it has interfaces to its 

environment and the knowledge to complete aviation-related tasks. 

For this research, the “end state” or goal of the agent flying the airplane is not 

explicit since the goal is just to maintain certain aspects of a state. While explicit 

representation can be useful in choosing which operators to select, it is not a requirement 

[2] for this model. 
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This iteration of the model is not expected to produce scientifically significant 

results for any one specific study at this time, but it does demonstrate that the framework 

for a cognitive model for airline pilots is accurate for a number of use cases. This model 

should be able to be expanded upon to achieve a higher fidelity for future uses to predict 

pilot performance and, eventually, workload of pilots in a wide variety of situations. 

Common effects of eye-scan pattern behavior that has been of research interest for 

decades include fixation durations, number of fixations, saccadic movements, and scan 

pattern changes. Definitions of eye-scan terms and relevant metrics can be found in the 

Table 1 below. 

Table 1: Definitions of eye-related metrics 

Term Definition 

Area of Interest An area of interest is a region over a field of view that is significant 

due to a particular source of information that may be available there 

for a human to look at. In an airplane cockpit, there could be 

several areas of interest, such as the primary flight displays, mode 

control panel, EICAS, and flight management system. 

Fixation 

Frequency 

Fixations that are “a relatively stable eye-in-head position within 

some threshold of dispersion (~2 degrees) over some minimum 

duration (200ms), and with a velocity threshold of 15-100 degrees 

per second” [3]. This shows a positive correlation to subject 

workload similar to fixation total. 
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Table 1 - continued 

Gaze (or Dwell 

Time) 

Gaze is similar to fixations in that it is the grouping of fixations 

within a single region of interest. The area around which a gaze is 

calculated is dependent on the size of the area of interest. 

Saccade A saccade is the movement of the eye from one fixation to the next. 

The speed of a saccade is obtained by calculating the distance from 

one fixation to the next and calculating the time difference to result 

in an angular velocity in degrees per second. 

Link Analysis A link analysis measures the relative strength among transitions of 

fixations between any two areas of interest. This was a useful tool 

that Fitts et al. [4] used in their study of eye movements of pilots 

during instrument flight. 

 

The research presented in this paper will also perform a link analysis and an 

analysis of region of interest of the gaze of the software pilot model for different tasks. 

The results of this analysis are covered in Chapter 5. Finally, Chapter 6 summarizes the 

effort of developing this cognitive model as well as future work that can be pursued to 

develop this capability further for projects outside of commercial aviation.   
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CHAPTER 2: HUMAN MODEL FRAMEWORKS 

Cognitive architectures instantiate “united theories of cognition” consisting of 

implementations of theories of the mechanisms utilized by humans in processing 

information. Since Newell articulated the goal of United Theories of Cognition in his 

prominent book [5], a number of cognitive architectures have been developed, with 

varying degrees of depth and breadth of model applications [6]. This section will provide 

a quick overview of a few of the more common models used in human modeling. 

 There are different types of goals of cognitive architecture research which can 

generally be grouped into three categories: biological modeling, psychological modeling, 

and AI functionality. Table 2 below illustrates the different groupings of cognitive 

architectures and which time scales each type is best suited for. 

Table 2: Newell's Time Scale of Human Action 

Scale (sec) Time Units System Cognitive Category 

107 Months  Social 

106 Weeks  Social 

105 Days  Social 

104 Hours Task Rational 

103 10 Minutes Task Rational 

102 Minutes Task Rational 

101 10 Seconds Unit Task Cognitive 

100 1 Second Operations Cognitive 

10-1 100 ms Deliberate Act Cognitive 

10-2 10 ms Neural Circuit Biological 

10-3 1 ms Neuron Biological 

10-4 100 us Organelle Biological 

 

 There are several different modeling methods and scopes that cover several bands 

of this scale. No one modeling method encompasses all of the bands however. To 
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sufficiently model the behavior of an airline pilot, one does not need to get down to the 

level of modeling neurons firing as there is not much intelligent action going on at that 

level.  These biological bands on the lower end of the time scale model what we know 

about the brain: neurons, neural circuits, etc. They predict neural activity and cognitive 

behavior. Two examples of models that detail this part of the spectrum are LEABRA [7] 

[8], and SPAUN [9]. 

 Next there is psychological modeling tools and methods that target human 

performance in a wide range of cognitive tasks. They predict human reaction time and 

error rates for psychological tasks such as ACT-R [10] [11], EPIC [12], CLARION [13], 

LIDA [14], CHREST [15], and 4CAPS [16]. 

 Finally, there are modeling techniques that emulate AI functionality and moves 

closer toward human-level intelligence inspired by psychology and biology. The 

emphasis is more on complex cognitive processing and longer time-scales (upwards of 

hours). Examples of these models include Soar [17], Companions [18], Sigma [19] [20], 

ICArUS [21], and CogPrime [22]. 

 Several candidate modeling techniques will be reviewed in the remainder of this 

chapter. Their role in the development of human performance modeling is illustrated as 

well as their benefits and drawbacks to being used in modeling pilot performance in 

commercial cockpits. 

GOMS 

In 1983, Card, Moran, and Newell published a book titled The Psychology of 

Human-Computer Interaction that helped bridge the gap for cognitive modeling between 
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the science and useful applications. They recognized that the human-computer interface 

at the time was rapidly becoming the most important domain in human factors practice 

[1]. One of the more prominent models put forward in this book is called GOMS, or 

Goals, Operators, Methods, and Selections rules. It is a specialized human-information-

processor model for human-computer interactions. 

 Most of the earlier models were created with desktop computer applications in 

which the computer only does something in response to an action by the user. Aircraft 

cockpits don’t have such simple conditions; forces and other agents external to the pilot’s 

control, including weather, mechanical systems, air traffic control, and traffic often 

dictate the pace of the tasks to the pilot. 

 GOMS reduces a user’s interactions with a computer to their elementary actions 

(physical, cognitive, or perceptual). Goals are what the user intends to accomplish. 

Operators are actions that are performed to reach the goal. Methods are sequences of 

operators that accomplish a goal. There can be more than one method available to 

accomplish a single goal. If this is the case, then selection rules are used to describe when 

a user would select a certain method over the others. 
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Figure 1: Model Human Processor - memories and processors [1] 

 A GOMS estimate of a particular interaction can be calculated with little effort, at 

little cost, and in a short amount of time if the average methods-time measurement data 

for each task has been previously measured experimentally to a high degree of accuracy. 

With a careful investigation into all of the detailed steps necessary for a user to 

successfully interact with an interface, the measurement of how long it will take a user to 

successfully interact with an interface is a simple calculation. Summing the times 
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necessary to complete the detailed steps provides an estimate for how long it will take a 

user to successfully complete the desired task. A sample of time estimates can be found 

in Figure 1. 

 None of the techniques address user unpredictability – such as user behavior 

being affected by fatigue, social surroundings, or organizational factors. The techniques 

are very explicit about basic movement operators, but are generally less rigid with basic 

cognitive actions. In the real world, splits cannot be prevented, but none of the GOMS 

models allow for any type of error. Further, all of the techniques work under the 

assumption that a user will know what to do at any given point – so they apply only to 

expert users, not novices. 

 User personalities, habits, or physical restrictions (for example, disabilities) are 

not accounted for in any of the GOMS models. All users are assumed to be exactly the 

same. Extensions of the baseline GOMS model have been developed to allow the 

formulation of GOMS models describing the interaction behavior of disabled users. 

 Except for Keystroke Level Modeling (KLM), the evaluators are required to have 

a fairly deep understanding of the theoretical foundations of GOMS, Cognitive 

Complexity Theory (CCT), or Model Human Processor (MHP). This limits the effective 

use of GOMS to large entities with the financial power to hire a dedicated human-

computer interaction (HCI) specialist or contract with a consultant with such expertise. 

Variants of GOMS 

 The plain, or “vanilla flavored” GOMS first introduced by Card, Moran, and 

Newell is now referenced as CMN-GOMS. Keystroke Level Modeling is the next GOMS 
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technique and was also introduced by Card, Moran, and Newell in their 1983 book [1]. 

This technique makes several simplifying assumptions that make it really just a restricted 

version of GOMS. The third major variant of the GOMS technique is the Natural GOMS 

Language (NGOMSL). This technique gives a very strict, but natural, language for 

building GOMS models. The final variation of GOMS is Cognitive Perceptual Motor-

GOMS (CPM-GOMS). This technique is based on the MHP. The main advantage of 

CPM-GOMS is that it allows for the modeling of parallel information processing by the 

user; however, it also is the most difficult GOMS technique to implement. 

Importance of GOMS Analysis 

 Before applying the average times for detailed functions, it is very important that 

an experimenter make sure he or she has accounted for as many variables as possible by 

using assumptions. Experimenters should design the GOMS analysis for the users who 

will most likely be using the system that is being analyzed. Consider, for example, that an 

experimenter wishes to determine how long it will take an F22 Raptor pilot to interact 

with an interface he or she has used for years. It can probably be assumed that the pilot 

has outstanding vision and is in good physical health. In addition, it can be assumed that 

the pilot can interact with the interface quickly because of the vast hours of simulation 

and previous use he or she has endured. All things considered, it is fair to use “fastman” 

times in this situation. Contrarily, consider a 65-year-old individual with no flight 

experience, let alone fighter pilot experience, attempting to interact with the same F22 

Raptor interface. It is fair to say that the two people would have much different skill sets, 

and those skill sets should be accounted for subjectively. 
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Cognitive Perceptual Motor-GOMS 

 The CPM-GOMS was developed by Bonnie E. John while at the school of 

Computer Science at Carnegie Mellon University in 1988. Bonnie John was a student of 

Allen Newell. Unlike other GOMS variations, CPM-GOMS does not assume that the 

user’s interaction is a serial process, and hence it can model multi-tasking behavior that 

can be exhibited by experienced users. The technique is also based directly on the MHP – 

a simplified model of human response. 

 The tasks are first joined serially and then examined to see which actions can be 

overlapped so that they happen in parallel. This technique facilitates representation of 

overlapping and the very efficient “chunks” of activity characteristic of expert users. The 

times estimated by CPM-GOMS are generally faster since they do not allocate as much 

time to the “prepare for action” type of operations. 

 This is the most difficult GOMS technique to implement. Therefore, it has the 

problem of discrepancies between evaluators. Research is currently being conducted to 

improve the CPM-GOMS technique so that it can be used without the evaluator having a 

high-level understanding of the GOMS theoretical foundations. 

CogTool 

 A team at Carnegie Mellon University, headed by Bonnie John, has created an 

open-source tool to support KLM analysis. CogTool was developed to enable low-cost, 

rapid construction of interactive prototypes that focus on systems involving deliberate 

commands that the user invokes by some motor action [23]. It automatically evaluates 

user interface designs with a predictive human performance model (a “cognitive crash 

dummy”). Types of systems include cell phones, handheld terminals, in-vehicle driver 
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information systems, and computers that run desktop applications. Cog Tool has 

increased the accuracy of the KLM because it applies the theory more consistently 

through its “modeling by demonstration” approach, and has been reported to be within 

about 10% of empirical data [24].  

ACT-R 

 The Adaptive Control of Thought-Rational (ACT-R) is a cognitive architecture 

developed at Carnegie Mellon University. ACT-R is a proposed unified theory of 

cognition realized as a production system designed to predict human behavior by 

processing information and generating intelligent behavior itself. In short, the ACT-R 

model for cognition tries to provide a comprehensive explanation for high-level cognitive 

control behavior. ACT-R is a computation cognitive architecture that takes as inputs 

knowledge about how to do the task, both procedural and declarative, and a simulated 

world or environment in which to run. 

 ACT-R has two types of long-term memory: declarative and procedural. 

Declarative memory defines things that are factual in nature, such as “George 

Washington was the first president of the United States” and “2+3=5.” The basic unit of 

declarative knowledge is known as chunks. Procedural knowledge consists of production 

rules that encode skills and take the form of condition-action pairs (if/then statements). 

These production rules correspond to goals or sub-goals and mainly consist of retrieval 

and storage of declarative knowledge. 

 In ACT-R, a chunk’s activation decreases as a function of time since the chunk 

was created and increases with the number of times the chunk has been retrieved from 

memory. When retrieving items from memory, ACT-R looks at the most active chunk in 
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memory; if it is above the threshold, it is retrieved, otherwise an “error of omission” has 

occurred, i.e., the item has been forgotten. 

 An important aspect of the ACT-R system is that it operates in real time: Each 

covert step of cognition (production firing, retrieval from declarative memory) or overt 

action (mouse-click, moving attention) has latencies associated with it that are based on 

psychological theories and data. For example, firing a production rule typically takes 50 

milliseconds, and the time needed to scan a part of a computer screen is calculated using 

Fitt’s law. In this way, the system allows application of psychological knowledge in real 

time. 

 Fitt’s Law: 

𝑇 = 𝑎 + 𝑏 log2 (
𝐷

𝑊
+ 1) 

where: 

 T is the average time taken to complete the movement. 

 a represents the start/stop time of the device. 

 b  represents the inherent speed of the device. 

 D is the distance from the starting point to the center of the target. 

 W is the width of the target measured along the axis of motion. W can also be 

thought of as the allowed error tolerance in the final position, since the final point 

of the motion must fall within +/- W/2 of the target’s center. 

From Fitt’s Law, the speed-accuracy tradeoff can be seen where targets that are smaller 

and/or further away require more time to acquire. 
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ACT-R/PM 

 ACT-R is used primarily to model experiment psychology data. However, there is 

a version of ACT-R that has also been used to model behavior in synthetic environments. 

It was developed at Carnegie Mellon University and is called the ACT-R Perceptual 

Motor (ACT-R/PM) model. The enhancements provide any model created with ACT-

R/PM the ability to interact with a simulated device such as a computer, driving/flight 

simulator, video game, etc. 

 The research from [25] developed a computational model of a closed-loop, pilot-

displays-aircraft system designed to evaluate the impact of the addition of a synthetic 

vision system (SVS) to a commercial airliner cockpit on pilot’s attention-allocation 

behaviors. ACT-R was used for the pilot model and was coupled to the flight simulator 

package, X-Plane, via a low-level UDP network connection. 

 

Figure 2: Byrne's ACT-R pilot model overview [25] 
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Soar 

Soar originally stood for State, Operator And Result, and was created by John 

Laird, Allen Newell, and Paul Rosenbloom at Carnegie Mellon University, and is now 

maintained by John Laird’s research group at the University of Michigan. The Soar 

development community, over time, no longer regarded Soar as an acronym, which is 

why it is no longer written in upper case. At Larid’s research group, graduate students 

work on both cognitive model architecture improvements to Soar as well as finding new 

applications for Soar. 

The views of the cognition underlying Soar are tied to the psychological theory 

expressed in Allen Newell’s book, Unified Theories of Cognition [5]. Soar is based on a 

production system, much like ACT-R, using production rules similar to the form of 

“if…then…” conditions. Solving of problems in Soar analyzes the problem space 

(achievable states that can be reached by the system) for a goal state (the solution of the 

problem). A search is conducted to find a solution that brings the system closer to its goal 

state. 

While Soar can be used to help understand cognition and solve problems with 

production rules, it has a documented programmer interface that provides a means to 

allow Soar agents to interact with external environments. It is this feature that made Soar 

extremely desirable to develop the SoarEye pilot perception module. 

There are several key abilities for controlling aircraft simulations that do not 

coincide with the strengths of production systems, such as performing a large amount of 

numerical calculations and optimization problems. These tasks need to be off-loaded to 

an external interface that can be written in more traditional languages such as C++, Java, 
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and Python. The Soar Markup Language (SML) allows simplified interaction of a Soar 

agent with external environments and other software systems that complement Soar’s 

strengths (e.g., neural networks, state estimation techniques, and object recognition 

methods). 

The SML protocol has been used for giving robots a form of cognition by 

allowing them to make decisions based on sensor input from their surroundings. The 

Cognitive Robots System (CRS) is an excellent example [26] in the last few years of how 

embedded systems can take advantage of a production system architecture to create a 

symbolic representation of the environment to a Soar agent. 

For the CRS, three sensors and two infrared sensors are used to detect obstacles in 

front of and to the sides of the SuperDroid. Wheel encoders installed on the two front 

wheels are used to estimate position of the SuperDroid. Two web cameras are also 

installed on the SuperDroid and implemented as a stereo pair to measure distances to 

edge pixels. A laptop onboard receives all the sensor information and concentrates it for 

the Soar model to process on the input branch of its working memory [9]. 
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Figure 3: The SuperDroid and a schematic of the hardware used on the SuperDroid for 

map generation [26] 

 Jones et al. [27] have used the Soar architecture to autonomously fly U.S. military 

fixed-wing aircraft during missions in a simulated environment for the TacAir-Soar 

project using Soar agents with 5200 production rules, 450 total operators, and 130 

abstract operators. These agents were used as AI entities in simulated war games to help 

create large-scale battles without requiring a large number of people. This helped 

demonstrate the scalability of Soar to thousands of rules, due to the use of the Rete 

algorithm [28]. The TacAir-Soar project also demonstrated that Soar is capable of 

performing high-level activities, such as reasoning, using large agents in a simulated 

environment with real-time constraints. Since cognitive architectures are able to model 

general decision making, a single Soar agent can be used for multiple missions and can 

be capable of using multiple approaches to the same problem. 
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Figure 4: Example part of the goal hierarchy of TacAir-Soar 

Other Considerations 

 In software engineering, different steps use one or more representations [29]. For 

instance, data flow diagrams (DFDs), entity life histories (ELHs), entity relationship 

diagrams (ERDs), and process outlines (POs) are used in Structured Systems Analysis 

and Design Methodology (SSADM), in the same way as use cases, activity diagrams, and 

interaction diagrams are representations used in the Unified Modeling Language (UML). 

It would therefore seem desirable for task analysis output representations to be in the 

form of one or more of such software engineering representations or to be easily 

translated into them. However, many task analysis methods [29] have been developed by 

researchers with a psychological background and have focused mainly on the first steps 

of user interface design, so their outputs often do not integrate well with those from 

software engineering. 

The classical software engineering distinction (adapted from IEEE-STD-610) is 

between verification (verity that a clearly specified problem is solved properly) and 
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validation (ensuring that what is done meets the actual requirements). Verification is 

generally made by semi-automatic tools, while validation requires human interpretation. 

Neural Networks 

Another type of cognitive model is a neural network. This has become more 

popular in the last couple of decades due to the processing power that has become 

available in computers. Neural networks are “trained” to become highly skilled at one or 

two tasks. These networks are fed massive amounts of historical training data from 

previous experts conducting the same task that the network then “learns” from to adjust 

the weights and biases of the network of artificial neurons. Training neural networks is a 

time-intensive task that can take hours, days or weeks even with just a few variables to 

observe. 

 

Figure 5: Simple neural network illustration 

In Figure 5, each circle represents a ‘neuron’ of a neural network. The leftmost 

layer is called the input layer of the network and the rightmost, or output layer, which in 

this illustration is just a single output neuron. The middle layers are called the “hidden 
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layer” since they are not exposed to the world like the input or output layer is. In more 

complex neural networks, there are several hidden layers in the middle of the network. 

Since the expertise of a neural network is only as good as the training data that is 

fed into it, extreme caution must be used in how neural networks are applied to general 

problem solving. The neural network (named AlphaGo) that bested the world best Go 

players in 2016, is highly skilled at playing the game Go, but would fail at chess, or any 

other board game, for that matter. In much the same way, IBM’s Watson can become 

highly trained to defeat the best human players in Jeopardy!, but would in no way 

become a medical professional using the same training dataset. 
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CHAPTER 3: SOAR BASICS 

Due to previous successes with Soar design being used in task execution duration 

on the order of minutes to hours and the relative ease of interfacing Soar agents with 

external environments, Soar was selected as the cognitive architecture to use in this 

research endeavor. In this chapter, a quick summary of the core components of Soar: 

production memory, reinforcement learning, substates and impasses, chunking, as well as 

semantic and episodic memory are presented. This will prepare for coverage of how the 

SoarEye tool was constructed in the following chapter. 

Production System Components 

 

Figure 6: Production System Structure [2] 

Long-term procedural knowledge is implemented in Soar as a series of if-then 

rules, or production rules [30]. Figure 6 contains a block diagram of the structure of a 

generic production system. The “if” part of a rule consists of conditions (on the left side 

of the arrow in the long-term memory block) that must be satisfied by working memory 
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for the rule to match. The “then” parts of the production rules are actions that add, 

modify, or delete structures in working memory. 

Preferences for production rules can be classified in Soar as seen in Table 3. 

Table 3: Symbolic preference for selecting operators 

Preference Syntax Meaning 

Acceptable + All operators with acceptable preference are collected into the 

candidate set 

Reject - Any operator in the candidate set with a reject preference is 

removed from the set 

Better/worse >>/<< All operators in the candidate set that are worse than another 

operators in the candidate set are removed from the set 

Best > If there are any operators in the candidate set with best 

preference, then all operators without best preference are 

removed from the candidate set 

Worst < If there are any operators in the candidate set without worst 

preference, then all operators with worst preference are 

removed from the candidate set 

Indifferent = Indifferent preference specifies that all operators are equally 

good and a random selection can be made between them 

 

Working Memory 

Working memory contains all of a Soar agent’s dynamic information about its 

world and its internal reasoning. It contains sensor data, intermediate calculations, current 

operators, and goals. In Soar, every element in working memory, or a working memory 

element (WME), consists of three parts, an identifier, attribute, and value (which can be a 

constant or another identifier) (See Figure 7). All of working memory is organized as a 

graph structure in states that are connected and directed [31]. Every WME therefore is 

connected directly or indirectly to a state symbol (see example in Figure 8). 
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Figure 7: Example of a Working Memory Element Structure 

 

Figure 8: Example of structure of working memory [31] 
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The Soar Processing Cycle 

 The Soar processing cycle, presented in Figure 9, shows the high-level sequence 

of events when a Soar agent evaluates a situation. All the processes represented by 

rectangles are performed by production rules. The round-cornered rectangles in Figure 9 

are fixed task-independent processes. The input and output phases provide Soar’s means 

to interact with an environment, while the decision phase chooses the current operator. 

 

Figure 9: The Soar processing cycle 

Input Phase 

 During the input phase, new working-memory elements are added to reflect 

changes in perception. To extract relevant sensory information from the external 

environment (simulated vision, hearing, touch, or another type of interaction with another 

program) and transfer it to working memory, a perception module must be written in a 

language that interfaces with Soar, such as C++, Java, C#, or Python [2]. Similarly, to 

initiate commands in an external environment, an output module must be created. 

 The interface with perception and output systems is via working memory through 

the input-link and output-link structures, which are substructures of the input-output (io) 

state structure [2]. By having an area reserved for external input, Soar can distinguish 

between structures created by perception and those generated internally by its own 

reasoning. 
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Decision Procedure 

 The results of the decision procedure are either the selection of a new operator or 

an impasse, which are discussed later in this chapter.  

Parallel Operators 

In Soar, only one operator can be selected at a time, forcing a sequential 

bottleneck. This design decision dates back to the original tasks implemented in Soar in 

which an operator’s taking a step in a problem space would generate a new state. With 

that strategy, parallel operators would have generated multiple new states, pushing 

selection knowledge to the selection of the next state. 

Once Soar gained the capability to interact with external environments, the 

restriction against parallel operators was maintained on the grounds that parallel 

operators could have conflicting actions that would be difficult for an agent to detect and 

recover from. Even with that restriction, there are multiple ways to generate parallel 

action in Soar: 

 Operator switching: As long as Soar is fast enough relative to the environment 

(which is the case in most uses), Soar can switch back and forth between 

operators that initiate independent external actions, giving the appearance of 

parallelism in the environment, even though only one operator is selected at a 

time [2]. 

 Overlapping output actions: for temporally extended actions that do not require 

constant cognitive attention, multiple actions can be initiated either through a 

sequential operator application or through mega-operators.  
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Goal Detection 

 There is no separate phase for goal detection in Soar. The knowledge to detect the 

achievement of a goal can be encoded either as state elaborations or as a separate 

operator. For more complex agents that can pursue multiple goals, goals can be created 

by operators or operators can act as goals by being selected, but where there are no 

application rules, the achievement of the operator is pursued in a substate (discussed later 

in this chapter) so that the operator becomes a goal.  

 The basic processing cycle starts by matching conditions of production rules 

against the contents of working memory. This matching process determines which 

production rules have all of their conditions satisfied by the elements in working 

memory. If a rule tests whether working memory includes a representation of a blue 

block and a yellow block, and those elements exist in working memory, the rule matches. 

 The results of the matching process is a set of rule instantiations. There is one rule 

instantiation for each successful match of a rule to working memory. The match process 

can also compute which rules that previously matched no longer match. Although not 

used in many rule-based systems, this ability to detect when a rule retracts is built into 

Soar. 

 The major computational cost of a production system is matching the rules against 

working memory. The naïve approach is to compare all of the conditions of all the rules 

to all elements of working memory on each cycle. This is an expensive approach to 

matching rules, as the cost would be WC*R, where W is the number of elements in 

working memory, C is the average number of conditions in each rule, and R is the 

number of rules. 
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 The Rete algorithm was designed to avoid this problem. Instead of matching all 

conditions to all of the working memory in each cycle, Rete processes only the changes 

in working memory. This method explicitly trades space for speed; Rete maintains a 

memory of all partial matches for all rules and processes the changes in working memory 

to update the partial matches and determine which rules completely match and which no 

longer match. Given that there usually are only a small number of changes in working 

memory during each cycle and that those changes only affect a small number of rules, it 

is possible to create rule matchers that can efficiently process a very large number of 

rules. 

Instantiation and Operator Support 

 The persistence of WMEs is determined by the type of rule that selected them. A 

rule instantiation that does not test the current operator and makes changes in the state 

will remove all WMEs it created whenever any of the WMEs tested in the conditions are 

removed from working memory. This is called instantiation-support, or i-support. 

 The other class of support, which leads to persistent WMEs, is called operator-

support, or o-support. All WMEs created by an operator-application rule have o-support 

and persist until they are removed by the actions of the rule, or when they become 

disconnected from the state through removal of other WMEs. 

 



www.manaraa.com

29  
 

Reinforcement Learning 

Reinforcement learning (RL) is one of the core tasks in machine learning (ML). It 

is one of the two main primary methods of learning procedural knowledge, as seen in 

Figure 10. The other method is called “chunking” and will be reviewed later in this 

chapter. Reinforcement learning allows an agent to modify or tune existing rules by 

adjusting numeric preferences in operator-evaluation rules. 

 

Figure 10: Methods for Learning Procedural Knowledge [31] 

 RL algorithms are dependent on making adjustments to rules over long periods of 

time and not from a single experience. This allows an agent to become robust to noise 

with the agent’s interaction with the environment in which it is operating in over time. A 

simple illustration of the RL process cycle can be found in Figure 11. Inside the agent, 

there is a value function, called the Q function, which maintains the current expected 

reward for every action. Referring to this value function, the agent tries to select an action 

that will maximize the future reward. 
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Figure 11: Reinforcement Learning Cycle 

 All the numeric preferences created for an operator are added together to evaluate 

the Q value for that operator. In Soar, the symbolic preferences are given priority as that 

provides boundaries of the desirability of the operators. Then after the symbolic 

preferences have filtered out the desired operators, the Q values are used to select from 

the remaining operators. Figure 12 shows an example of three operators and their 

calculated Q values. In this example, O1 would be the most likely selected operator, 

although O2 and O3 are still possible as well. The exact probability of operator selection 

depends on which selection scheme is chosen by the agent designer. 

 

Figure 12: Example calculation of Q Value for three operators (O1, O2, and O3) 

Impasses and Substates in Soar 

 If an agent always has sufficient knowledge, the model will just do the task at 

hand. There is no planning or simulation of external actions, no reasoning/simulation 
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about other agents/entities, no subgoals for task decomposition, and no reasoning about 

reasoning (metacognition).  Metacognition arises from scenarios where there is 

insufficient or conflicting knowledge and the model has to take a step back and create a 

separate state from which to reason (without disrupting the original reasoning). This 

process of learning compiles metacognition into direct knowledge for future situations. 

 An impasse arises if there is insufficient/conflicting procedural knowledge to 

select an operator. In Soar, there are four ways in which an impasse can manifest itself: 

- [state no-change] No operator is proposed  

- [operator tie] Multiple operators are proposed by insufficient preferences to select 

between them 

- [operator no-change] An operator is selected, but it can’t be applied by a single 

rule 

- [operator conflict] Multiple operators are proposed with conflicting better/worse 

preferences 

To resolve any of these three types of impasses, a substate is created. The substate 

created is a framework for deliberate reasoning and accessing additional knowledge 

sources (long-term memories, external environment, or internal reasoning (planning)) to 

resolve the impasse. An impasse is considered resolved when results, sometimes through 

recursive impasses, lead to a decision. 

Figure 13 illustrates the WMEs that are created for a tie impasse among three 

operators (O31, O32, and O33) in state S20. Soar creates the substate identifier S23 and 

the WMEs as well as augmentations with the type of impasse (no-change, conflict, or tie) 
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and an “attribute” augmentation that indicates if the cause is “state” or “operator.” 

Substates in Soar are managed by the architecture and cannot be created/modified/deleted 

by rules. 

 

Figure 13: Substate structures 

Chunking 

 The addition of using substates to resolve impasses is useful, but the problem is 

that, by itself, the knowledge discovered with the substates is lost after each problem 

solving episode. Chunking is Soar’s first learning mechanism and is the capability to 

build new rules that summarize processing. These new “chunks” of rules are built as soon 

as a result is produced. There is one chunk for each result, where a result consists of 

connected WMEs that become results at the same time. Soar will only learn what it 

“thinks” about and is impasse driven; in other words, learning arises from a lack of 

knowledge. 

Semantic and Episodic Memory 

 Semantic memory in Soar is designed to support deliberate storage and retrieval 

of long-term “objects,” features, and relations. Semantic memory is similar to working 
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memory in that it consists of symbolic triples (Figure 14); however, attributes cannot be 

identifiers, and the resulting graph is not necessarily connected. Semantic memory is 

disabled by default in Soar and needs to be explicitly turned on by a user of Soar. Agents 

can acquire and store semantic knowledge either manually via a user using the command 

line (especially useful for loading larger external data sources), or via deliberate (via 

rules) addition/modification by the agent. 

 

Figure 14: Example of interaction between working memory and semantic memory 

 Since semantic memory can become very large, it was implemented with a 

SQLite backend so it has the ability to save semantic stores to disk and use disk-based 

databases. However, this often causes semantic memory to be the slowest portion of most 

Soar models. 

Episodic memory is a form of a weak learning mechanism in Soar. When enabled, 

it automatically captures, stores, and temporally indexes agent state to create an 
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autobiographical prior experience memory structure. Episodic memory is what you 

“remember,” and semantic memory is what you “know.” As with semantic memory, 

episodic memory representation is similar to working memory in that it consists of 

symbolic triples and attributes cannot be identifiers (Figure 15). Structures within an 

episode are connected; separate episodes are disconnected. 

 

Figure 15: Processing and memory modules supporting episodic memory 

Episodic memory could have a role in a pilot model by storing and retrieving 

times when it last saw a specific configuration of the autopilot to anticipate the 

outcome/behavior and environmental dynamics in similar situations. Just as is the case 

with semantic memory, the goal of episodic memory is to support a form of long-term 

memory that interacts with working memory for real-time agents that have long lifespans 

(hours to days).  
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CHAPTER 4: SOAREYE ARCHITECTURE AND BEHAVIOR 

This chapter explores the development of the eye-movement behavior for the pilot 

model. There are some constraints to the cognitive model software that make it easier to 

unload some tasks to external pieces of software. The mechanics of eye movement are 

math oriented, and Soar is better suited for non-math behavior. The software tool 

SoarEye, which brings everything together, was designed to deal with the eye-movement 

mechanics. The commands for eye movement still come from Soar, but the 

implementation of how the eyes move from point A to point B is done inside of SoarEye 

and not the cognitive model. 

Data Publishing 

 First, the eye-movement model needs to capture the metrics needed for analysis. 

Ideally, they should match the metrics that would be collected from actual airline pilots. 

The system that the Operator Performance Laboratory (OPL) has used in the 737 

simulator for numerous studies is called SmartEye. The SmartEye system reports on the 

3D coordinates of several facial features and eye metrics and publishes that as User 

Datagram Protocol (UDP) packets at 60 hertz. The Cognitive Avionics Tool Set (CATS) 

data collection system picks up those packets and stores them in a Structured Query 

Language (SQL) database with a timestamp for subsequent analysis. 

 The pilot-model interface has been coded so that it also sends out the SmartEye 

system packets in the exact same format, so the CATS data system can collect eye 

movement data as if a real human were being eye tracked. This makes data collection 

trivial, as CATS was already designed to collect and store these UDP-formatted packets. 

The SQL database can be queried for eye-tracking data for subsequent analysis as would 
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be done with regular human subject-matter expert participants in studies conducted in the 

simulator environment as well. 

Coordinate System Definition 

The coordinate system for the pilot model implemented the same coordinate 

system that the SmartEye system uses so the data-recording system saw the data exactly 

as if it were coming from a real human in the cockpit. This is defined with a world model 

in 3D space using x, y, and z coordinates. 

 

Figure 16: High-level diagram showing SoarEye data flow 
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Table 4: Orientation of the coordinate system 

Axis Orientation 

X Positive X to the left of the pilot facing forward 

Y Positive Y upwards towards the roof of the plane 

Z Orthogonal to the XY plane with positive Z toward the nose of the aircraft 

 

World Model 

The world model of the 737 simulator was constructed from measuring key 

instruments/controls with respect to the world origin (0, 0, 0), which is located near 

where the pilot’s head would be in the cockpit. Using the coordinate system defined in 

the previous section, we can see that looking straight ahead would “see” things to the left 

with a positive X value and things to the right with a negative X value. Things that are 

above the pilot’s head would be seen with a positive Y value, and any items below the 

pilot’s head would have a negative Y value. A visual representation of a pilot sitting in 

the left seat of the aircraft looking forward illustrates the X & Y axes in Figure 17. 

Two primary interfaces of concern in the world model for the SoarEye software is 

the primary flight display (PFD) and the mode control panel (MCP). Figure 18 and 

Figure 19 illustrate the coordinates for various elements of the PFD and MCP, 

respectively, as they were measured in the OPL simulator. 
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Figure 17: X & Y Axis of pilot looking forward in the cockpit 

 

Figure 18: PFD with (x,y,z) coordinates specified for regions of interest 
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Figure 19: MCP with (x, y) coordinates specified for regions of interest (z=0.734 for all 

MCP elements) 

Eye Movement 

 When an event triggered either internally via the SoarEye tool or via a command 

from the Soar agent itself causes a command to move the eyes from one fixation to the 

next, a short series of steps takes place. A simple example will illustrate these steps as 

seen in Figure 20. The calculations for eye gaze vectors, angles, and saccade movements 

between fixations is done in the SoarEye tool and not the Soar agent. 

Assume that the pilot model is currently fixated on the LNAV engage button on 

the Mode Control Panel (MCP) and Soar issues a command to look at the attitude 

indicator on the primary flight display (PFD). The 3D coordinates for both the left and 

right eyes are known, as are the coordinates of the current fixation 

(MCP_LNAV_Engage) and the goal of the next fixation (PFD_Attitude_Indicator). Gaze 

vectors for both the current fixation and the goal fixation are easily calculated. Next, the 

angle between those two vectors is calculated (in this case, it is about 43.54°). Finally, the 
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time for the eyes to traverse the angle between those two locations is assumed to travel on 

the shortest path between the current and goal fixation points. Again, for this particular 

case, it takes the eyes approximately 0.22 seconds (assuming a saccade speed of about 

200° per second). 

 

Figure 20: Example Eye Gaze Vector Transition (Not to Scale) 

Instrument Uncertainty 

 Every instrument in the cockpit displays real-time data of the aircraft. However, 

the human is only capable of perceiving a small selection of all the instruments due to the 

simple fact that the human eye can only focus in about a 1.5 degree field of view [32]. 
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This is because the central region of the human eye is where the foveal vision has a 

densely packed region of cones for near 100% visual acuity (Figure 21). The Soar pilot 

interface emulates this by only providing updates to the Soar agent of whatever 

instrument it is currently looking at with the model’s eyes. Once the pilot looks away 

from a particular instrument, it no longer has the 100% certainty of its value/state. 

 

Figure 21: Photograph of the retina of the human eye, with overlay diagrams showing the 

positions and sizes of the macula, fovea, and optic disc 

 Some instruments are capable of changing faster than others, so each channel can 

be set up with its own unique decay rate. The type of decay can also vary per instrument, 

as each instrument changes at different rates, and within an instrument, depending on 

phase of flight. An example is that the altimeter of an aircraft may not change much or at 
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all during a cruise phase of a flight, but it can change dramatically during a 

descent/approach into an airport. While all three decay types depicted in Figure 22, only 

the Type II (linear) decay was used for the scenarios outlined later in this paper. 

 

Figure 22: Example of the three different uncertainty decay types implemented in the 

SoarEye model 

There are four different visually guided saccade movement categories: visually 

guided saccade, antisaccade, memory-guided saccade, and predictive saccade. Of these 

four categories, only memory-guided saccades for prescribed procedures and visually 



www.manaraa.com

43  
 

guided saccades (scanning) have been implemented in the SoarEye model. A complete 

list of the eye metrics of the data packets (and their definitions) from the SoarEye model 

can be found in Appendix A. 

Cockpit Configuration File 

The SoarEye model needs to accommodate a wide variety of aircraft types, but 

every aircraft type will have a different physical layout of instruments and controls. In 

order to adapt to this reality, an aircraft-specific configuration file can be made for as 

many aircraft as needed. To make a fair comparison to the simulator environment at the 

OPL, an aircraft file for a Boeing 737-800 cockpit was developed using the physical 

dimensions of the 737 simulator located at the facility. This required dozens of 

measurements with respect to the world origin to determine the location of dozens of 

controls and instruments related to basic aircraft tasks. 

 These measurements were taken down to the millimeter and placed into the 

Extensible Markup Language (XML) file (see Appendix B). Every region of interest 

(ROI) was given a name as well as its x, y, z world coordinates in meters. A certainty 

decay value and decay type is also specified per instrument in this file. This allows a user 

of the SoarEye tool to customize the parameters for uncertainty as they see fit for the 

particular aircraft they are defining in that file. There is no one correct value for any 

instrument and it may take some experimentation to find a set of values that works for the 

user of the tool. 

Passing Data to the Agent 

 Data needs to be passed along from the SoarEye interface to the Soar agent. This 

is done via the input-link of the Soar agent as specified in the previous chapter. Figure 24 
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shows an example of what the input-link branch of the WMEs of the pilot agent would 

look like. There are two elements added to the input-link for every instrument that the 

SoarEye controller is aware of. Those two elements would have the value/state of the 

instrument specified and another for the certainty of the instrument. 

 Using the SML .dll resource in the C# project permits simple function calls to add 

new WMEs as seen in the example in Figure 23. Every time the update Soar timer is 

triggered in the application, all of the WMEs that need to be updated are removed and 

then re-added with their new values. This is because a WME in Soar cannot be modified; 

it can only be removed or added. 

 

Figure 23: Code sample of function create to add WME with an integer value 

In Soar there is no pre-defined structure on the input-link, which is up to the 

designer/programmer of the agent. For this application, a simple structure of one element 

per variable is added to the input-link branch of working memory. A sample subset of 

what that structure looks like can be found in Figure 24. With these values present in 

working memory, the production rules can make decisions based on what it has as its 

most recent value for each instrument/control relevant to the task being completed. 



www.manaraa.com

45  
 

 

Figure 24: Subset of the SoarEye model input-link 

Motor Movement Model 

For the purposes of this project, a high-fidelity motor movement model of hand 

movements was not required. A more simple approximation of hand and arm movement 

is required only to create the appropriate delay in manipulating controls in the cockpit. A 

reasonable approximation of time for a hand to move from “point A” to “point B” 
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(translational motion) is to use Fitt’s Law. Fitt’s Law was introduced in Chapter 2 while 

discussing ACT-R visual model performance and is presented here again: 

Fitt’s Law 

The equation for Fitt’s law [33] is defined as follows: 

𝑇 = 𝑎 + 𝑏 log2 (
𝐷

𝑊
+ 1) 

where 

 T is the average time taken to complete the movement. 

 a represents the start/stop time of the device. 

 b represents the inherent speed of the device. 

 D is the distance from the starting point to the center of the target. 

 W is the width of the target measured along the axis of motion. W can also be 

thought of as the allowed error tolerance in the final position, since the final 

point of the motion must fall within ±W/2 of the target’s center. 

 

 

Figure 25: Analysis of the movement of a user's hand to a target 
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Figure 25 shows how D and W are determined with a simple start point and the target is 

drawn. From Fitt’s law, the speed-accuracy tradeoff can be seen where targets that are 

smaller and/or farther away require more time to acquire. 

 For the SoarEye tool, it was assumed that each target for the hand was 

approximately 1 cm across in the direction of motion. The tasks that the SoarEye model 

is asked to perform for the scope of this research only involve pressing buttons and 

rotating dials on the MCP, all of which are approximately 1 cm across. 

 In 1994, Kondraske [34] wrote a paper building upon Fitt’s translational motion 

model to also account for angular motion. This more comprehensive model could be 

incorporated in the future to predict performance in tasks that involved one or more 

jointed body segments with even more precision.  
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CHAPTER 5: RESULTS AND ANALYSIS 

Methodology 

 The SoarEye model was tested with the Operator Performance Laboratory’s 737-

800 flight simulator (Figure 26) located at the Iowa City airport. The 737-800 simulator 

is comprised of full glass cockpit displays, 180 degree outside visual projection system, a 

mode control panel, driven throttle quadrant, hardware control display units (CDUs) with 

a functional flight management system (FMS) and enhanced display control panels 

(EDCPs). On the glass cockpit displays, there is a left and right seat PFD, left and right 

seat multi-function display (MFDs), and upper and lower engine indicating and crew 

alerting system (EICAS). For purposes of working with and initial evaluation of the 

SoarEye tool, only the left/captain subset of these systems is considered. The right/first 

officer (FO) side of the cockpit would normally be used by the first officer, which isn’t 

considered here. 
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Figure 26: OPL Boeing 737-800 flight deck simulator 

 The SoarEye model connects to the simulator via XPUIPC software which allows 

SoarEye to access memory offsets containing the variables of the flight simulator that are 

of interest. Since the XPUIPC application transmits simulator state variables via UDP 

packets, the SoarEye and Soar agent can run either on the same machine as X-Plane or on 

any computer connected to the same network as the computers running the simulator. For 

the experimental setup, SoarEye was run on a laptop using Windows 10 with an i7 

processor and 8.0GB of RAM so as not to interfere with simulator performance and vice 

versa. An illustration depicting a high-level architecture of the data collection setup can 

be found in Figure 27. 
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Figure 27: High level network connection diagram of setup for data collection 

Scenarios 

 To test the SoarEye model with this configuration, four different scenarios/tasks 

were designed to exercise the model, collect and analyze data from. They are listed in 

Table 5 below. 

Table 5: Scenarios/tasks to collect data from SoarEye 

Scenario 1 Straight and Level flight at 28,000 feet, 270 heading 

Scenario 2 Left-hand turn 

Scenario 3 Right-hand turn 

Scenario 4 Climb from 28,000 feet (FL280) to 32,000 feet (FL320) 
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 Scenario 1 is a simple baseline task of the aircraft flying in cruise configuration. 

This was selected for the simple reason that the pilot’s primary job is to observe the 

automation flying the aircraft for the pilot and no motor action is required by the pilot. 

This allowed data collection of a pure eye-gaze only task to compare to the next three 

tasks. A cruise altitude of 28,000 feet (FL280) and heading of 270 degrees (west) were 

selected. 

 Scenario 2 is also a simple task of performing a left-hand turn. This tasks consists 

of maintaining altitude (staying in vertical navigation (VNAV)), and having the SoarEye 

model select heading mode (HDG) on the MCP and dial a new heading (90 degrees left 

of current heading). The pilot monitors the aircraft heading as the turn is executed 

through the aircraft leveling wings. 

 Scenario 3 is nearly identical to Scenario 2 in that it’s a turn but in the opposite 

direction (right). Just as in the previous scenario, the pilot maintains altitude (staying in 

VNAV), and selected the aircraft into heading mode (HDG) on the MCP. This task 

should show very similar eye gaze metrics since nearly all the same tasks are completed. 

 Scenario 4 is a climb from 28,000 feet (FL280) to 32,000 feet (FL320). This 

scenario could occur in the real world for a number of reasons (avoiding turbulence, 

traffic, convective weather avoidance, etc.). However, the reason is not important for the 

SoarEye data collection as the actions taken to complete the task would be the same 

regardless. The pilot turns the altitude knob on the MCP to the target altitude (FL320) 

and changes the cruise altitude in the flight management system by entering the new 

altitude into the control display unit (CDU). The aircraft then enters a climb and the pilot 

monitors the aircraft until it levels off at the new altitude. 
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 Each scenario was run in the simulator 10 times. The data collected in CATS was 

compiled and inserted into a spreadsheet separated by scenario. Tables were then 

organized for both area of interest (AOI) analysis and a link analysis. The results of those 

analyses are presented in the following sections. 

Regions of Interest 

 Region of Interest is one mechanism of analyzing the eye gaze data and compare 

it to other sets of data to gauge how close to actual pilot performance the SoarEye model 

is. For Scenario 1 of straight and level flight, Figure 28 highlights what regions of interest 

the SoarEye model was fixating on. This makes sense that the MCP items accounted for 

less than 7% of the fixations in areas of interest as there is nothing there that requires the 

pilot’s input/attention during straight and level flight. 
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Figure 28: Region of Interest percentage of SoarEye fixations during Scenario 1, straight 

and level flight 

Figure 29 shows what the SoarEye model fixations are during Scenario 2, a left 

turn of 90 degrees. Note the increase in amount of time spent looking at the captain 

navigation display. This is due to the Soar model checking more frequently the heading 

of the aircraft to verify correct operation of the flight management system. There are also 

some noticeable increases in fixations on the mode control panel. This is from the pilot 

model needing to switch the aircraft over to heading mode and dial in the 90 degree turn 

left. Very similar changes between straight and level and Scenario 3, the 90 degree turn 

right, can be found in Figure 30. 
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Figure 29: Region of Interest percentage of SoarEye fixations during Scenario 2, the 90 

degree left turn 

 Figure 31 shows the SoarEye model fixations during scenario 4, the climb from 

FL280 to FL320.  The largest difference between scenario 4 and scenario 1 is the 

decrease in fixation time on the captain navigation (Capt_Nav) display. The two new 

fixations regions of the PFD introduced are the altitude bug setting and the vertical speed 

indicator. The altitude bug becomes part of the scan pattern for the model once a new 

altitude is selected in the MCP to ensure the autopilot is targeting the correct altitude. The 

pilot model looks at the vertical speed indicator as part of the scan pattern to ensure the 

aircraft is in fact climbing and to ensure the rate slows down once aircraft reaches the 

target altitude (FL320). 
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Figure 30: Region of Interest percentage of SoarEye fixations during Scenario 3, the 90 

degree right turn 

Table 6 summarizes the region of interest percentages among the four scenarios. 

The regions of interest that comprise the overall PFD and MCP were consolidated for 

ease of comparison as not every component within each was used in each scenario. The 

most significant item of note from this table was the difference between the baseline 

(scenario 1) and the scenario that the pilot model performs the climb (scenario 4). There 

was an increase of nearly 7% of fixations on the PFD during the climb compared to the 

baseline. Digging into the PFD components of the display, the increase of 7% to the PFD 

can be attributed to the fixations on the altitude bug setting and vertical speed indicator 

which were not part of the scan pattern during scenario 1. 
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Figure 31: Region of Interest percentage of SoarEye fixations during Scenario 4, the 

climb to FL320 

As a consequence of the increase in attention to the PFD, the navigation display 

saw a drop-off of nearly 5% of fixations during the climb. The EICAS also saw a 

marginal drop in fixations during the climb of approximately 3% (14% to 11%). There 

were only minor changes of approximately 1% among all the scenarios for the other 

regions of interest (Captain CDU, outside visual, MCP).  
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Table 6: Region of Interest percentage comparison among scenarios 

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 

PFD 27% 31% 31% 34% 

MCP 14% 12% 13% 15% 

Capt_Nav 18% 17% 17% 12% 

EICAS 14% 13% 13% 11% 

Capt_CDU 18% 18% 17% 19% 

OSV_Ahead 9% 9% 9% 9% 

 

Link Analysis 

A link analysis was also done on the data collected from the SoarEye model for 

all four scenarios. This counts the raw number of links/transitions between regions of 

interest. A link is defined as a fixation from one region on interest, followed by a 

saccade, to another fixation on another region of interest. This link analysis was 

conducted as a one-way transition (e.g. a transition from the MCP to the EICAS is unique 

from a transition from the EICAS to the MCP). These types of analyses have been done 

for years with some of the earlier ones conducted by [4]. An example illustration of what 

the link analysis looked like from that study can be found in Figure 32. 

 

Figure 32: Adjacency layout diagram of eye-movement link values between aircraft 

instruments during an approach [4] 
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AOI transition data was collected within SoarEye and exported to a spreadsheet 

for analysis. Table 7 contains the data for link analysis during Scenario 1, straight-and-

level flight. The numbers within these tables add up to 100% and represent the 

percentage values that fixations move from one AOI to the others. 
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Table 7: Link analysis for straight-and-level flight 
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 An adjacency layout diagram was constructed for straight-and-level flight was 

generated from the data produced by SoarEye. Figure 33 illustrates the links between 

AOI for any that had a frequency percentage greater than 1%. Links are color-coded to 

depict the ranges of frequency, as shown in the legend within the figure. 

 

Figure 33: Adjacency layout diagram of SoarEye model eye movement among 

instruments during straight-and-level flight 

An adjacency layout diagram was constructed for scenario 2 (left-hand turn) by 

data that was generated from SoarEye. The data for the left-hand turn can be found in 

Table 8. Figure 34 illustrates the links between AOI for any that had a frequency 

percentage greater than 1%. Links are color-coded to depict the ranges of frequency, as 

shown in the legend within the figure. 
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Table 8: Link analysis for left-hand turn 
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Figure 34: Adjacency layout diagram of SoarEye model eye movement among 

instruments during a left-hand turn (scenario 2) 

 A link-analysis was also performed on the eye tracking data collected from the 

SoarEye model during a right-hand turn as well. The data can be found in Table 9, and 

resulting adjacency layout diagram in Figure 35. The data from the link-analysis was near 

identical to what was found in the left-hand turn (scenario 2). This corroborates what was 

expected since the exact same production rules to drive eye movement in the Soar agent 

were used regardless if the turn was left or right handed.  
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Table 9: Link analysis for right-hand turn 
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Figure 35: Adjacency layout diagram of SoarEye model eye movement among 

instruments during a right-hand turn (scenario 3) 

Finally, a link analysis was performed on the data collected from running scenario 

4, a climb from FL280 to FL320. Data can be found in Table 10 and the adjacency layout 

diagram can be found in Figure 36 for this scenario.   
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Table 10: Link analysis of a climb from FL280 to FL320 
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Figure 36: Adjacency layout diagram of SoarEye model eye movement among 

instruments during a climb between FL280 and FL320 (scenario 4) 

Tool Verification 

To establish a reference to look at the accuracy of the SoarEye model, data 

collected from a simulator study conducted in August of 2018 at the Operator 

Performance Laboratory was analyzed. This data collection effort took place in the same 

Boeing 737 simulator that the SoarEye model was connected to for its data collection 

effort. This study collected eye tracking data from seven (N = 7) commercial airline 

pilots performing an assortment of maneuvers while on autopilot. The eye tracking data 

collected from the pilots was done with a Dikablis head-worn eye tracker and the CATS 

data collection system. All seven of the pilots were Boeing qualified (first officers and 

captains) at the time of the data collection. 
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This simulator study with the airline pilots was for the evaluation a new type of 

system display in the cockpit to assist pilots in identifying autopilot mode change 

behaviors quickly. In order to make a comparison to the standard setup, half of the 

scenarios for each pilot were done with the new display available. The other half of the 

scenarios were done with the simulator configured in a standard setup to be used as a 

baseline. For purposes of the research in this chapter, only the eye tracking data from the 

simulator runs with the baseline configuration were used. A comparison of the data 

collected from the SoarEye model and the airline pilots can be found in Table 11.  

Table 11: Comparison of SoarEye vs Actual Region of Interest Data 

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 

 SoarEye Pilots SoarEye Pilots SoarEye Pilots SoarEye Pilots 

PFD 27% 46.4% 31% 22.0% 31% 39.0% 34% 16.9% 

MCP 14% 1.0% 12% 1.9% 13% 0.6% 15% 3.7% 

Capt_Nav 18% 20.3% 17% 27.8% 17% 30.0% 12% 16.0% 

EICAS 14% 0.5% 13% 0.5% 13% 0.0% 11% 0.1% 

Capt_CDU 18% 7.0% 18% 4.9% 17% 7.3% 19% 2.2% 

OSV_Ahead 9% - 9% - 9% - 9% - 

Other - 24.0%  41.4%  22.7%  60.7% 

 

The data collected from the airline pilots’ shows that of the regions of interest 

tracked in the simulator, the PFD and the NAV displays were the most focused on 

regions of interest which generally agreed with what the SoarEye model predicted. 

However, the margins by which the airline pilots looked at the PFD and NAV were far 

greater than what the SoarEye model predicted. Another data point that stands out is that 

the airline pilots rarely looked at the EICAS display. In none of the scenarios did the 

pilots look at the EICAS for even more than 1% of the scenario duration. This makes 

some sense as the EICAS would primarily be consulted during engine run-up on takeoff 

and if there were cautions/warning/alerts that need to be addressed in non-normal 
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situations. Neither of these events were part of the four scenarios. The production rules in 

the Soar model spent far more time gazing at components inside of the EICAS which was 

a major contributor to the discrepancy.  

The SoarEye model production rules also estimated a greater period of time 

required to complete tasks on the CDU and MCP than what the airline pilots actually did. 

The estimates for task completion in the SoarEye model for CDU and MCP procedures 

need to accommodate faster execution times to emulate expert behavior in the future. 

In summary, there are three big differences between the SoarEye model and the 

airline pilot behavior witnessed in the simulator across these four scenarios. First, while 

pilots did have the EICAS display as part of their scan pattern, the dwell time was very 

short (less than a second) as they were only glancing at it to verify there wasn’t a 

caution/warning/alert that needed to be addressed. Second, the speed at which pilots 

completed steps on the CDU and MCP was much quicker than the SoarEye model 

predicted. This could be addressed with adjustments to execution times of the Soar 

production rules that approximates the behavior of a novice pilot. Third, in the simulator, 

there are several conversations that the airline pilots have with the copilot in the right seat 

of the simulator. When a pilot talks with their copilot, their eyes concentrate on their 

cockpit companion and not the instrumentation. The SoarEye model does not 

accommodate for this event (talking with a copilot) at this time which in turn, inflates the 

percentages of all regions of interest across the board. Future iterations of the SoarEye 

model will need to take this into account for more realistic eye scan behavior as 

conversations with other crew members is essential in today’s cockpit environments and 

should not be ignored.    
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CHAPTER 6: SUMMARY AND FUTURE WORK 

Summary 

 This project has shown that it is possible to obtain datasets of simulated eye scan 

behavior to help researchers identify opportunities to design scenarios for human subject 

matter experts in simulator studies. The SoarEye model demonstrates that a cognitive 

model driven software tool can be integrated with a simulated environment and data 

collection system to complete and analyze a wide-range of tasks that humans could 

perform. The region of interest, link analysis and model verification demonstrated that 

the model output, with adjustments, could reasonably approximate what would be 

expected of a human pilot sitting in the cockpit of the same aircraft/simulator. 

Future Research Areas 

 Throughout the course of this project, a number of issues and uses were identified 

which could be explored in the future. Firstly, only a small subset of tasks/scenarios were 

evaluated for this dissertation. This was due to the complexity of breaking down and 

converting task analysis for human operators into Soar rules in the cognitive model. 

Diagnosing behavior within Soar working with a real-time environment/simulation is an 

intensive endeavor. Future work should be expanded to explore a wider variety of tasks 

by adding more Soar rules to the SoarEye model. 

 Another key issue that could be investigated is how efficiently cockpits are 

designed. By doing a link-analysis of the scan pattern, it could be determined if there are 

instruments/controls in the cockpit that are frequently used together, but not closely 

spaced physically. This could be useful in both existing cockpit designs and evaluation of 

new cockpit design layouts for future aircraft.  
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 As was mentioned in the methodology section, the analysis of the SoarEye tool 

was constrained to the captain’s perspective (left seat). Further research could be done 

with two instances of SoarEye running simultaneously with a concurrent simulation to 

emulate the perception of a flight crew conducting the same flight. Pursing research with 

simulation perception and cognitive modeling of a flight crew could result in new 

insights into optimizations of procedures by eliminating redundant checks and/or fixing 

oversights in attention deficits of other items on checklists. In the discussion of the tool 

verification in Chapter 5, it was noted that the interaction of flight crew plays a key role 

for flight crews. Even verbal communication among crew has a large influence on visual 

attention, can disrupt eye scan behavior and needs to be taken into account. 

 The saliency of pilot perception in the cockpit is an additional capability that 

would be desirable for the SoarEye model. Being able to integrate mechanisms into the 

visual system of the pilot model to recognize visual events (new objects, changes in 

luminance, etc.) that might capture attention not in the line of sight, has been researched 

by many over several decades [35]. Another good place to start would be incorporating 

some form of Wickens Salience Effort Expectancy Value (SEEV) or N-SEEV models 

[36] [37]. 

 The physical capabilities of the SoarEye model could be enhanced as well. The 

SoarEye head/eye movement at the time of this writing is attached to a stationary torso 

that does not move. Developing a more accurate physical model of the pilot could 

enhance the realism for reaction times for both motor movements and perception of the 

environment by the cognitive model. While the differences would result in changes to 
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individual actions on the order of milliseconds, over simulation runs that last hours, this 

could be a significant development in accuracy of the model. 

 Finally, it would be of interest to be able to implement tools into SoarEye that can 

quiz the metrics in the Soar agent itself to estimate the workload of the pilot. The 

SoarEye model helps determine the mental representation airline pilots have for flight-

deck information. This is the initial step for developing cognitive measures of crew 

performance. There are a number of metrics in Soar that could potentially be correlated to 

how much effort the model is required to use to complete tasks the cockpit. How often 

memory is accessed, monitoring the reinforcement learning values being assigned to 

production rules specific to certain tasks, and how long individual inputs are 

ignored/neglected due to the model focusing on other tasks. Using data collected from 

simulator studies with human pilots, numerical weights could be assigned to the cognitive 

model metrics to achieve comparable workload ratings such as one would find with 

NASA-TLX and/or Bedford workload scores.  
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APPENDIX A: SMARTEYE PACKET DATA AND FORMAT 

 

Figure A.1: Packet structure/format of the eye metric packets 
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Table A.1: Data Types 

Data Type Consists of Type Alias 

u8 Unsigned integer 1 byte Type_u8 

u16 Unsigned integer 2 bytes Type_u16 

u32 Unsigned integer 4 bytes Type_u32 

s32 Signed integer 4 bytes Type_s32 

u64 Unsigned integer 8 bytes Type_u64 

f64 Floating point 8 bytes Type_f64 

Point2D f64 x 

f64 y 

Type_Point2D 

Vect2D f64 x 

f64 y 

Type_Vect2D 

Point3D f64 x 

f64 y 

f64 z 

Type_Point3D 

Vect3D f64 x 

f64 y 

f64 z 

Type_Vect3D 

String u16 size 

u8 ptr[1024] 

Type_String 

WorldIntersectionStruct Point3D worldPoint 

Point3D objectPoint 

String objectName 

 

WorldIntersection u16 size = 0..1 

WorldIntersectionStruct 

Type_WorldIntersection 

WorldIntersections u16 size = 0..1 

WorldIntersectionStruct 

Type_WorldIntersection 

Vector u16 size = 0..1 

N items of any Type 

Each Type is prefixed with 

u16 SubPacket ID 

Type_Vector 
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Table A.2: SubPacket IDs 

Enum ID Enum 

number 

Data type 

   

SEFrameNumber 0001 Type_u32 

SEHeadPosition 0010 Type_Point3D 

SEHeadPositionQ 0011 Type_f64 

SEHeadNoseDirection 0013 Type_Vect3D 

SEHeadUpDirection 0014 Type_Vect3D 

SEHeadLeftEarDirection 0015 Type_Vect3D 

SEFilteredGazeHeading 0036 Type_f64 

SEFilteredGazePitch 0037 Type_f64 

SEHeadRoll 0018 Type_f64 

SELeftGazeOrigin 001B Type_Point3D 

SERightGazeOrigin 001C Type_Point3D 

SELeftGazeDirectionQ 0025 Type_f64 

SERightGazeDirectionQ 0028 Type_f64 

SEFilteredLeftGazeDirection 0032 Type_Vect3D 

SEFilteredRightGazeDirection 0034 Type_Vect3D 

SEEyelidOpening 0050 Type_f64 

SEEyelidOpeningQ 0051 Type_f64 

SEClosestWorldIntersection 0040 Type_WorldIntersection 
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Table A.3: SubPacket item descriptions 

Data Item Unit Description 

Frame number - A sequential frame number. The frame 

number starts counting from 0 at application 

start and increments by 1 for each 

successfully built data packet. 

Head Position m The head position in 3D given in the 

defined world coordinate system 

Head Position Quality  0..1 (0 = no tracking, 1 = full tracking) 

Head Nose Direction  Unit vector defining the ‘nose’ direction. 

Identical to the z-axis of the head rotation 

matrix. 

Head Up Direction  Unit vector defining the ‘up’ direction. 

Identical to the y-axis of the head rotation 

matrix. 

Head Left Ear 

Direction 

 Unit vector defining the ‘left ear’ direction. 

Identical to the x-axis of the head rotation 

matrix. 

Filtered Gaze 

Heading 

rad The left/right angle of the gaze vector. 

Filtered Gaze Pitch rad The up/down angle of the gaze vector. 

Head Roll rad The tilt-rotation of the head. Also known as 

‘maybe’ rotation. 

Left Gaze Origin m The center of the iris of the left eye, where 

the gaze vector originates. 

Right Gaze Origin m The center of the iris of the right eye, where 

the gaze vector originates. 

Left Gaze Direction 

Quality 

 0..1. Depends on the quality of the iris 

detection of the left eye 

Right Gaze Direction 

Quality 

 0..1 Depends on the quality of the iris 

detection of the right eye 

Filtered Left Gaze 

Direction 

 A unit vector originating in the left gaze 

origin, describing the direction of the gaze 

of the left eye (filtered). 

Filtered Right Gaze 

Direction 

 A unit vector originating in the right gaze 

origin, describing the direction of the gaze 

of the right eye (filtered). 

Eyelid Opening m The average distance between the eyelids of 

both eyes 

Eyelid Opening 

Quality 

 Normally in the range 0..1. Calculates as the 

average quality of the both physical eyes. 

Closest World 

Intersection 

 The closest intersection with any of the 

world objects. The intersection information 

contains name of the object, intersection  
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Table A.3 - continued 

  point in world coordinates and intersection point 

in object coordinates. 

 

Each sub packet of this type starts with an 

integer indicating the number of world 

intersections contained in the sub packet. If there 

are no gaze intersections with world objects for 

the current frame, this integer will be 0, 

otherwise 1. 
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APPENDIX B: 737 COCKPIT DEFINITION FILE 

<?xml version="1.0" encoding="utf-8"?> 

<ArrayOfRoi xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 

  <Roi> 

     <Name>PFD_Attitude_Indicator</Name> 

     <X>50</X> 

     <Y>200</Y> 

 <Xm>0.125</Xm> 

 <Ym>-0.333</Ym> 

 <Zm>0.981</Zm> 

 <DecayTO>.005</DecayTO> 

 <DecayTOType>Linear</DecayTOType>  

 <DecayCRZ>.001</DecayCRZ> 

 <DecayCRZType>Linear</DecayCRZType> 

 <DecayAPP>.005</DecayAPP> 

 <DecayAPPType>Linear</DecayAPPType>  

  </Roi> 

  <Roi> 

     <Name>PFD_Heading_Indicator</Name> 

     <X>31</X> 

     <Y>220</Y> 

 <Xm>.148</Xm> 

 <Ym>-.417</Ym> 

 <Zm>0.981</Zm> 

 <DecayTO>.005</DecayTO> 

 <DecayTOType>Linear</DecayTOType>  

 <DecayCRZ>.001</DecayCRZ> 

 <DecayCRZType>Linear</DecayCRZType> 

 <DecayAPP>.005</DecayAPP> 

 <DecayAPPType>Linear</DecayAPPType>   

  </Roi> 

  <Roi> 

     <Name>PFD_Current_Airspeed</Name> 

     <X>20</X> 

     <Y>198</Y> 

 <Xm>0.172</Xm> 

 <Ym>-0.333</Ym> 

 <Zm>0.981</Zm> 

 <DecayTO>.005</DecayTO> 

 <DecayTOType>Linear</DecayTOType>  

 <DecayCRZ>.001</DecayCRZ> 

 <DecayCRZType>Linear</DecayCRZType> 
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 <DecayAPP>.005</DecayAPP> 

 <DecayAPPType>Linear</DecayAPPType>  

  </Roi> 

  <Roi> 

     <Name>PFD_Current_Altitude</Name> 

     <X>81</X> 

     <Y>203</Y> 

 <Xm>0.075</Xm> 

 <Ym>-0.333</Ym> 

 <Zm>0.981</Zm> 

 <DecayTO>.005</DecayTO> 

 <DecayTOType>Linear</DecayTOType>  

 <DecayCRZ>.001</DecayCRZ> 

 <DecayCRZType>Linear</DecayCRZType> 

 <DecayAPP>.005</DecayAPP> 

 <DecayAPPType>Linear</DecayAPPType>  

  </Roi> 

  <Roi> 

     <Name>PFD_Capt_FMA</Name> 

     <X>49</X> 

     <Y>181</Y> 

 <Xm>0.125</Xm> 

 <Ym>-0.261</Ym> 

 <Zm>0.981</Zm> 

 <DecayTO>.005</DecayTO> 

 <DecayTOType>Linear</DecayTOType>  

 <DecayCRZ>.001</DecayCRZ> 

 <DecayCRZType>Linear</DecayCRZType> 

 <DecayAPP>.005</DecayAPP> 

 <DecayAPPType>Linear</DecayAPPType>   

  </Roi> 

  <Roi> 

     <Name>PFD_Speed_Bug_Setting_Indicator</Name> 

     <X>23</X> 

     <Y>185</Y> 

 <Xm>0.172</Xm> 

 <Ym>-0.285</Ym> 

 <Zm>0.981</Zm> 

 <DecayTO>.005</DecayTO> 

 <DecayTOType>Linear</DecayTOType>  

 <DecayCRZ>.001</DecayCRZ> 

 <DecayCRZType>Linear</DecayCRZType> 

 <DecayAPP>.005</DecayAPP> 

 <DecayAPPType>Linear</DecayAPPType>  
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  </Roi> 

  <Roi> 

     <Name>PFD_Altitude_Bug_Setting_Indicator</Name> 

     <X>84</X> 

     <Y>182</Y> 

 <Xm>0.075</Xm> 

 <Ym>-0.285</Ym> 

 <Zm>0.981</Zm> 

 <DecayTO>.005</DecayTO> 

 <DecayTOType>Linear</DecayTOType>  

 <DecayCRZ>.001</DecayCRZ> 

 <DecayCRZType>Linear</DecayCRZType> 

 <DecayAPP>.005</DecayAPP> 

 <DecayAPPType>Linear</DecayAPPType>  

  </Roi> 

  <Roi> 

     <Name>PFD_Vertical_Speed_Indicator</Name> 

     <X>92</X> 

     <Y>203</Y> 

 <Xm>.056</Xm> 

 <Ym>-0.33</Ym> 

 <Zm>0.981</Zm> 

 <DecayTO>.005</DecayTO> 

 <DecayTOType>Linear</DecayTOType>  

 <DecayCRZ>.001</DecayCRZ> 

 <DecayCRZType>Linear</DecayCRZType> 

 <DecayAPP>.005</DecayAPP> 

 <DecayAPPType>Linear</DecayAPPType>   

  </Roi> 

  <Roi> 

     <Name>MCP_Set_Course</Name> 

     <X>203</X> 

     <Y>124</Y> 

 <Xm>-0.305</Xm> 

 <Ym>-0.08</Ym> 

 <Zm>0.734</Zm> 

 <DecayTO>.005</DecayTO> 

 <DecayTOType>Linear</DecayTOType>  

 <DecayCRZ>.001</DecayCRZ> 

 <DecayCRZType>Linear</DecayCRZType> 

 <DecayAPP>.005</DecayAPP> 

 <DecayAPPType>Linear</DecayAPPType>  

  </Roi> 

  <Roi> 
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     <Name>MCP_AT_Arm</Name> 

     <X>212</X> 

     <Y>123</Y> 

 <Xm>-0.34</Xm> 

 <Ym>-0.09</Ym> 

 <Zm>0.734</Zm> 

 <DecayTO>.005</DecayTO> 

 <DecayTOType>Linear</DecayTOType>  

 <DecayCRZ>.001</DecayCRZ> 

 <DecayCRZType>Linear</DecayCRZType> 

 <DecayAPP>.005</DecayAPP> 

 <DecayAPPType>Linear</DecayAPPType>   

  </Roi> 

  <Roi> 

     <Name>MCP_Set_Speed</Name> 

     <X>228</X> 

     <Y>117</Y> 

 <Xm>-0.385</Xm> 

 <Ym>-0.08</Ym> 

 <Zm>0.734</Zm> 

 <DecayTO>.005</DecayTO> 

 <DecayTOType>Linear</DecayTOType>  

 <DecayCRZ>.001</DecayCRZ> 

 <DecayCRZType>Linear</DecayCRZType> 

 <DecayAPP>.005</DecayAPP> 

 <DecayAPPType>Linear</DecayAPPType>  

  </Roi> 

  <Roi> 

     <Name>MCP_Speed_Knob</Name> 

     <X>233</X> 

     <Y>130</Y> 

 <Xm>-0.395</Xm> 

 <Ym>-0.117</Ym> 

 <Zm>0.734</Zm> 

 <DecayTO>.005</DecayTO> 

 <DecayTOType>Linear</DecayTOType>  

 <DecayCRZ>.001</DecayCRZ> 

 <DecayCRZType>Linear</DecayCRZType> 

 <DecayAPP>.005</DecayAPP> 

 <DecayAPPType>Linear</DecayAPPType>  

  </Roi>   

  <Roi> 

     <Name>MCP_VNAV_Engage</Name> 

     <X>242</X> 
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     <Y>117</Y> 

 <Xm>-0.425</Xm> 

 <Ym>-0.087</Ym> 

 <Zm>0.734</Zm> 

 <DecayTO>.005</DecayTO> 

 <DecayTOType>Linear</DecayTOType>  

 <DecayCRZ>.001</DecayCRZ> 

 <DecayCRZType>Linear</DecayCRZType> 

 <DecayAPP>.005</DecayAPP> 

 <DecayAPPType>Linear</DecayAPPType>  

  </Roi> 

  <Roi> 

     <Name>MCP_Heading_Knob</Name> 

     <X>250</X> 

     <Y>130</Y> 

 <Xm>-0.455</Xm> 

 <Ym>-0.08</Ym> 

 <Zm>0.734</Zm> 

 <DecayTO>.005</DecayTO> 

 <DecayTOType>Linear</DecayTOType>  

 <DecayCRZ>.001</DecayCRZ> 

 <DecayCRZType>Linear</DecayCRZType> 

 <DecayAPP>.005</DecayAPP> 

 <DecayAPPType>Linear</DecayAPPType>  

  </Roi>  

  <Roi> 

     <Name>MCP_Set_Heading</Name> 

     <X>253</X> 

     <Y>117</Y> 

 <Xm>-0.455</Xm> 

 <Ym>-0.08</Ym> 

 <Zm>0.734</Zm> 

 <DecayTO>.005</DecayTO> 

 <DecayTOType>Linear</DecayTOType>  

 <DecayCRZ>.001</DecayCRZ> 

 <DecayCRZType>Linear</DecayCRZType> 

 <DecayAPP>.005</DecayAPP> 

 <DecayAPPType>Linear</DecayAPPType>   

  </Roi> 

  <Roi> 

     <Name>MCP_LNAV_Engage</Name> 

     <X>264</X> 

     <Y>118</Y> 

 <Xm>-0.495</Xm> 
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 <Ym>-0.087</Ym> 

 <Zm>0.734</Zm> 

 <DecayTO>.005</DecayTO> 

 <DecayTOType>Linear</DecayTOType>  

 <DecayCRZ>.001</DecayCRZ> 

 <DecayCRZType>Linear</DecayCRZType> 

 <DecayAPP>.005</DecayAPP> 

 <DecayAPPType>Linear</DecayAPPType>  

  </Roi> 

  <Roi> 

     <Name>MCP_Set_Altitude</Name> 

     <X>278</X> 

     <Y>120</Y> 

 <Xm>-0.539</Xm> 

 <Ym>-0.08</Ym> 

 <Zm>0.734</Zm> 

 <DecayTO>.005</DecayTO> 

 <DecayTOType>Linear</DecayTOType>  

 <DecayCRZ>.001</DecayCRZ> 

 <DecayCRZType>Linear</DecayCRZType> 

 <DecayAPP>.005</DecayAPP> 

 <DecayAPPType>Linear</DecayAPPType>  

  </Roi> 

  <Roi> 

     <Name>MCP_Set_Vertical_Speed</Name> 

     <X>295</X> 

     <Y>121</Y> 

 <Xm>-0.595</Xm> 

 <Ym>-0.08</Ym> 

 <Zm>0.734</Zm> 

 <DecayTO>.005</DecayTO> 

 <DecayTOType>Linear</DecayTOType>  

 <DecayCRZ>.001</DecayCRZ> 

 <DecayCRZType>Linear</DecayCRZType> 

 <DecayAPP>.005</DecayAPP> 

 <DecayAPPType>Linear</DecayAPPType>  

  </Roi> 

  <Roi> 

     <Name>MCP_CMD_Engage_A</Name> 

     <X>307</X> 

     <Y>122</Y> 

 <Xm>-0.644</Xm> 

 <Ym>-0.091</Ym> 

 <Zm>0.734</Zm> 
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 <DecayTO>.005</DecayTO> 

 <DecayTOType>Linear</DecayTOType>  

 <DecayCRZ>.001</DecayCRZ> 

 <DecayCRZType>Linear</DecayCRZType> 

 <DecayAPP>.005</DecayAPP> 

 <DecayAPPType>Linear</DecayAPPType>  

  </Roi> 

  <Roi> 

     <Name>MCP_CMD_Engage_B</Name> 

     <X>314</X> 

     <Y>124</Y> 

 <Xm>-0.671</Xm> 

 <Ym>-0.091</Ym> 

 <Zm>0.734</Zm> 

 <DecayTO>.005</DecayTO> 

 <DecayTOType>Linear</DecayTOType>  

 <DecayCRZ>.001</DecayCRZ> 

 <DecayCRZType>Linear</DecayCRZType> 

 <DecayAPP>.005</DecayAPP> 

 <DecayAPPType>Linear</DecayAPPType>  

  </Roi> 

  <Roi> 

     <Name>MCP_CMD_Disengage</Name> 

     <X>312</X> 

     <Y>140</Y> 

 <Xm>-0.656</Xm> 

 <Ym>-0.143</Ym> 

 <Zm>0.734</Zm> 

 <DecayTO>.005</DecayTO> 

 <DecayTOType>Linear</DecayTOType>  

 <DecayCRZ>.001</DecayCRZ> 

 <DecayCRZType>Linear</DecayCRZType> 

 <DecayAPP>.005</DecayAPP> 

 <DecayAPPType>Linear</DecayAPPType>  

  </Roi> 

  <Roi> 

     <Name>MCP_VS_Wheel</Name> 

     <X>299</X> 

     <Y>132</Y> 

 <Xm>-0.511</Xm> 

 <Ym>-0.129</Ym> 

 <Zm>0.734</Zm> 

 <DecayTO>.005</DecayTO> 

 <DecayTOType>Linear</DecayTOType>  
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 <DecayCRZ>.001</DecayCRZ> 

 <DecayCRZType>Linear</DecayCRZType> 

 <DecayAPP>.005</DecayAPP> 

 <DecayAPPType>Linear</DecayAPPType>  

  </Roi> 

  <Roi> 

     <Name>MCP_Vertical_Speed_Engage</Name> 

     <X>284</X> 

     <Y>135</Y> 

 <Xm>-0.558</Xm> 

 <Ym>-0.134</Ym> 

 <Zm>0.734</Zm> 

 <DecayTO>.005</DecayTO> 

 <DecayTOType>Linear</DecayTOType>  

 <DecayCRZ>.001</DecayCRZ> 

 <DecayCRZType>Linear</DecayCRZType> 

 <DecayAPP>.005</DecayAPP> 

 <DecayAPPType>Linear</DecayAPPType>   

  </Roi> 

  <Roi> 

     <Name>MCP_Altitude_Knob</Name> 

     <X>285</X> 

     <Y>138</Y> 

 <Xm>-0.539</Xm> 

 <Ym>-0.113</Ym> 

 <Zm>0.734</Zm> 

 <DecayTO>.005</DecayTO> 

 <DecayTOType>Linear</DecayTOType>  

 <DecayCRZ>.001</DecayCRZ> 

 <DecayCRZType>Linear</DecayCRZType> 

 <DecayAPP>.005</DecayAPP> 

 <DecayAPPType>Linear</DecayAPPType>   

  </Roi>   

  <Roi> 

     <Name>MCP_Altitude_Hold_Engage</Name> 

     <X>276</X> 

     <Y>136</Y> 

 <Xm>-0.539</Xm> 

 <Ym>-0.134</Ym> 

 <Zm>0.734</Zm> 

 <DecayTO>.005</DecayTO> 

 <DecayTOType>Linear</DecayTOType>  

 <DecayCRZ>.001</DecayCRZ> 

 <DecayCRZType>Linear</DecayCRZType> 
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 <DecayAPP>.005</DecayAPP> 

 <DecayAPPType>Linear</DecayAPPType>   

  </Roi> 

  <Roi> 

     <Name>MCP_APP_Mode_Engage</Name> 

     <X>263</X> 

     <Y>135</Y> 

 <Xm>-0.495</Xm> 

 <Ym>-0.134</Ym> 

 <Zm>0.734</Zm> 

 <DecayTO>.005</DecayTO> 

 <DecayTOType>Linear</DecayTOType>  

 <DecayCRZ>.001</DecayCRZ> 

 <DecayCRZType>Linear</DecayCRZType> 

 <DecayAPP>.005</DecayAPP> 

 <DecayAPPType>Linear</DecayAPPType>  

  </Roi> 

  <Roi> 

     <Name>MCP_Heading_Select_Engage</Name> 

     <X>254</X> 

     <Y>135</Y> 

 <Xm>-0.455</Xm> 

 <Ym>-0.134</Ym> 

 <Zm>0.734</Zm> 

 <DecayTO>.005</DecayTO> 

 <DecayTOType>Linear</DecayTOType>  

 <DecayCRZ>.001</DecayCRZ> 

 <DecayCRZType>Linear</DecayCRZType> 

 <DecayAPP>.005</DecayAPP> 

 <DecayAPPType>Linear</DecayAPPType>   

  </Roi> 

  <Roi> 

     <Name>MCP_Speed_Controlled_Level_Change_Engage</Name> 

     <X>244</X> 

     <Y>135</Y> 

 <Xm>-0.425</Xm> 

 <Ym>-0.134</Ym> 

 <Zm>0.734</Zm> 

 <DecayTO>.005</DecayTO> 

 <DecayTOType>Linear</DecayTOType>  

 <DecayCRZ>.001</DecayCRZ> 

 <DecayCRZType>Linear</DecayCRZType> 

 <DecayAPP>.005</DecayAPP> 

 <DecayAPPType>Linear</DecayAPPType>   
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  </Roi> 

  <Roi> 

     <Name>MCP_Speed_Set_Engage</Name> 

     <X>220</X> 

     <Y>133</Y> 

 <Xm>-0.363</Xm> 

 <Ym>-0.134</Ym> 

 <Zm>0.734</Zm> 

 <DecayTO>.005</DecayTO> 

 <DecayTOType>Linear</DecayTOType>  

 <DecayCRZ>.001</DecayCRZ> 

 <DecayCRZType>Linear</DecayCRZType> 

 <DecayAPP>.005</DecayAPP> 

 <DecayAPPType>Linear</DecayAPPType>  

  </Roi> 

  <Roi> 

     <Name>MCP_N1_Engage</Name> 

     <X>212</X> 

     <Y>135</Y> 

 <Xm>-0.34</Xm> 

 <Ym>-0.134</Ym> 

 <Zm>0.734</Zm> 

 <DecayTO>.005</DecayTO> 

 <DecayTOType>Linear</DecayTOType>  

 <DecayCRZ>.001</DecayCRZ> 

 <DecayCRZType>Linear</DecayCRZType> 

 <DecayAPP>.005</DecayAPP> 

 <DecayAPPType>Linear</DecayAPPType>   

  </Roi>   

  <Roi> 

     <Name>MCP_Flight_Director_On_Off</Name> 

     <X>205</X> 

     <Y>135</Y> 

 <Xm>-0.323</Xm> 

 <Ym>-0.134</Ym> 

 <Zm>0.734</Zm> 

 <DecayTO>.005</DecayTO> 

 <DecayTOType>Linear</DecayTOType>  

 <DecayCRZ>.001</DecayCRZ> 

 <DecayCRZType>Linear</DecayCRZType> 

 <DecayAPP>.005</DecayAPP> 

 <DecayAPPType>Linear</DecayAPPType>  

  </Roi> 

  <Roi> 
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     <Name>Capt_Nav</Name> 

     <X>150</X> 

     <Y>200</Y> 

 <Xm>-0.297</Xm> 

 <Ym>-0.333</Ym> 

 <Zm>0.923</Zm> 

 <DecayTO>.005</DecayTO> 

 <DecayTOType>Linear</DecayTOType>  

 <DecayCRZ>.001</DecayCRZ> 

 <DecayCRZType>Linear</DecayCRZType> 

 <DecayAPP>.005</DecayAPP> 

 <DecayAPPType>Linear</DecayAPPType>  

  </Roi> 

  <Roi> 

     <Name>Lower_EICAS</Name> 

     <X>240</X> 

     <Y>260</Y> 

 <Xm>-0.56</Xm> 

 <Ym>-0.585</Ym> 

 <Zm>0.82</Zm> 

 <DecayTO>.005</DecayTO> 

 <DecayTOType>Linear</DecayTOType>  

 <DecayCRZ>.001</DecayCRZ> 

 <DecayCRZType>Linear</DecayCRZType> 

 <DecayAPP>.005</DecayAPP> 

 <DecayAPPType>Linear</DecayAPPType>  

  </Roi> 

  <Roi> 

     <Name>EICAS</Name> 

     <X>280</X> 

     <Y>200</Y> 

 <Xm>-0.671</Xm> 

 <Ym>-0.262</Ym> 

 <Zm>0.981</Zm> 

 <DecayTO>.005</DecayTO> 

 <DecayTOType>Linear</DecayTOType>  

 <DecayCRZ>.001</DecayCRZ> 

 <DecayCRZType>Linear</DecayCRZType> 

 <DecayAPP>.005</DecayAPP> 

 <DecayAPPType>Linear</DecayAPPType>  

  </Roi> 

  <Roi> 

     <Name>OSV_Ahead</Name> 

     <X>50</X> 
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     <Y>80</Y> 

 <Xm>0.00</Xm> 

 <Ym>0.10</Ym> 

 <Zm>1.0</Zm> 

 <DecayTO>.005</DecayTO> 

 <DecayTOType>Linear</DecayTOType>  

 <DecayCRZ>.001</DecayCRZ> 

 <DecayCRZType>Linear</DecayCRZType> 

 <DecayAPP>.005</DecayAPP> 

 <DecayAPPType>Linear</DecayAPPType>  

  </Roi> 

  <Roi> 

     <Name>Landing_Gear</Name> 

     <X>220</X> 

     <Y>200</Y> 

 <Xm>-0.59</Xm> 

 <Ym>-0.262</Ym> 

 <Zm>0.858</Zm> 

 <DecayTO>.005</DecayTO> 

 <DecayTOType>Linear</DecayTOType>  

 <DecayCRZ>.001</DecayCRZ> 

 <DecayCRZType>Linear</DecayCRZType> 

 <DecayAPP>.005</DecayAPP> 

 <DecayAPPType>Linear</DecayAPPType>  

  </Roi> 

  <Roi> 

     <Name>Overhead_Panel</Name> 

     <X>280</X> 

     <Y>20</Y> 

 <Xm>-0.505</Xm> 

 <Ym>0.389</Ym> 

 <Zm>0.249</Zm> 

 <DecayTO>.005</DecayTO> 

 <DecayTOType>Linear</DecayTOType>  

 <DecayCRZ>.001</DecayCRZ> 

 <DecayCRZType>Linear</DecayCRZType> 

 <DecayAPP>.005</DecayAPP> 

 <DecayAPPType>Linear</DecayAPPType>  

  </Roi> 

  <Roi> 

     <Name>Capt_CDU</Name> 

     <X>180</X> 

     <Y>270</Y> 

 <Xm>-0.367</Xm> 
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 <Ym>-0.531</Ym> 

 <Zm>0.82</Zm> 

 <DecayTO>.005</DecayTO> 

 <DecayTOType>Linear</DecayTOType>  

 <DecayCRZ>.001</DecayCRZ> 

 <DecayCRZType>Linear</DecayCRZType> 

 <DecayAPP>.005</DecayAPP> 

 <DecayAPPType>Linear</DecayAPPType>  

  </Roi> 

</ArrayOfRoi> 
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